Formulations of Stochastic Programming Problems and Risk Aversion

Andrzej Ruszczyński

International Conference on Stochastic Programming
Bergamo, July 2013
Uncertain Outcomes and Risk

Why Probabilistic Models?
- Wealth of results of probability theory
- Connection to real data via statistics
- Universal language (engineering, economics, medicine, . . .)

- Probability space \((\Omega, \mathcal{F}, P)\)
- Decision space \(\mathcal{X}\)
- Random outcome (e.g., cost) \(Z_x(\omega), \ Z : \mathcal{X} \times \Omega \rightarrow \mathbb{R}\)

Expected Value Model

\[
\min_x \mathbb{E}[Z_x] = \int_{\Omega} Z_x(\omega) \ P(d\omega)
\]

It optimizes the outcome on average (Law of Large Numbers?)

What is Risk?

Existence of unlikely and undesirable outcomes - high \(Z_x(\omega)\) for some \(\omega\)
Classical Utility Models

Expected Utility Models (von Neumann and Morgenstern, 1944)

\[
\min_{x \in X} \mathbb{E}\left[u(Z_x)\right] \quad \left(= \int_{\Omega} u(Z_x(\omega)) \, dP(\omega)\right)
\]

\(u : \mathbb{R} \rightarrow \mathbb{R}\) is a nondecreasing disutility function

Rank Dependent Utility (Distortion) Models (Quiggin, 1982; Yaari, 1987)

\[
\min_{x \in X} \int_{0}^{1} F_{Z_x}^{-1}(p) \, dw(p)
\]

\(F_{Z_x}^{-1}(\cdot)\) - quantile function

\(w : [0, 1] \rightarrow \mathbb{R}\) is a nondecreasing rank dependent utility function

Existence of utility functions is derived from systems of axioms, but in practice they are difficult to elicit.
Axioms of Expected Utility Theory

\(W \) is a lottery of \(Z \) and \(V \) with probabilities \(\alpha \in (0, 1) \) and \((1 - \alpha) \), if the probability measure \(\mu_W \) induced by \(W \) on \(\mathbb{R} \) is the corresponding convex combination of the probability measures \(\mu_Z \) and \(\mu_V \) of \(Z \) and \(V \):

\[
\mu_W = \alpha \mu_Z + (1 - \alpha) \mu_V.
\]

We write the lottery symbolically as

\[
W = \alpha Z \oplus (1 - \alpha) V.
\]

For law invariant preferences on the space of random vectors with values in \(\mathbb{R} \), von Neumann introduced the axioms:

Independence Axiom: For all \(Z, V, W \in \mathcal{Z} \) one has

\[
Z \prec V \implies \alpha Z \oplus (1 - \alpha) W \prec \alpha V \oplus (1 - \alpha) W, \quad \forall \alpha \in (0, 1)
\]

Archimedean Axiom: If \(Z \prec V \prec W \), then \(\alpha, \beta \in (0, 1) \) exist such that

\[
\alpha Z \oplus (1 - \alpha) W \prec V \prec \beta Z \oplus (1 - \beta) W
\]
Suppose the total preorder \succeq on \mathcal{Z} is law invariant, and satisfies the independence and Archimedean axioms. Then it has an “affine” numerical representation $U : \mathcal{Z} \to \mathbb{R}$:

$$U(\alpha Z \oplus (1 - \alpha) V) = \alpha U(Z) + (1 - \alpha) U(V).$$

If \succeq is weakly continuous, then a continuous and bounded function $u : \mathbb{R} \to \mathbb{R}$ exists, such that

$$U(Z) = \mathbb{E}[u(Z)] = \int_\Omega u(Z(\omega)) \, P(d\omega).$$

New proof by separation theorem - D. & R. 2012

In a more general setting, we may consider only r.v. with finite moments, and then the boundedness condition on $u(\cdot)$ can be relaxed.
Risk-Averse Utility

\[U(Z) = \mathbb{E}[u(Z)] = \int_{\Omega} u(Z(\omega)) \, P(d\omega) \]

Monotonicity

The total preorder \(\preceq \) is **monotonic** with respect to the partial order \(\leq \), if \(Z \leq V \implies Z \preceq V \).

We focus on \(Z \) containing integrable random vectors.

Risk Aversion

A preference relation \(\preceq \) on \(Z \) is **risk-averse**, if \(\mathbb{E}[Z|\mathcal{G}] \preceq Z \), for every \(Z \in Z \) and every \(\sigma \)-subalgebra \(\mathcal{G} \) of \(\mathcal{F} \).

Nondecreasing Convex Disutility

Suppose a total preorder \(\preceq \) on \(Z \) is weakly continuous, monotonic, risk-averse, and satisfies the independence axiom. Then the utility function \(u : \mathbb{R} \to \mathbb{R} \) is **nondecreasing and convex**.
Real random variables Z_i, $i = 1, \ldots, n$, are comonotonic, if

$$
(\overline{Z_i} - \underline{Z_i})(\overline{Z_j} - \underline{Z_j}) \geq 0
$$

for all $\omega, \omega' \in \Omega$ and all $i, j = 1, \ldots, n$.

Dual Independence Axiom: For all comonotonic random variables Z, V, and W in \mathcal{Z} one has

$$
Z \triangleleft V \implies \alpha Z + (1 - \alpha)W \triangleleft \alpha V + (1 - \alpha)W, \quad \forall \alpha \in (0, 1)
$$

Dual Archimedean Axiom: For all comonotonic random variables Z, V, and W in \mathcal{Z}, satisfying the relations

$$
Z \triangleleft V \triangleleft W,
$$

there exist $\alpha, \beta \in (0, 1)$ such that

$$
\alpha Z + (1 - \alpha)W \triangleleft V \triangleleft \beta Z + (1 - \beta)W
$$
Affine Representation

If the total preorder \succeq on \mathcal{Z} is law invariant, and satisfies the dual independence and Archimedean axioms, then a numerical representation $U : \mathcal{Z} \rightarrow \mathbb{R}$ of \succeq exists, which satisfies for all comonotonic $Z, V \in \mathcal{Z}$ and all $\alpha, \beta \in \mathbb{R}_+$ the equation

$$U(\alpha Z + \beta V) = \alpha U(Z) + \beta U(V).$$

Integral Representation

Suppose \mathcal{Z} is the set of bounded random variables. If, additionally, \succeq is continuous in \mathcal{L}_1 and monotonic, then a bounded, nondecreasing, and continuous function $w : [0, 1] \rightarrow \mathbb{R}_+$ exists, such that

$$U(Z) = \int_0^1 F_Z^{-1}(p) \, dw(p), \quad Z \in \mathcal{Z}.$$
Risk Averse Dual Utility

\[U(Z) = \int_0^1 F_Z^{-1}(p) \, dw(p), \quad Z \in \mathcal{Z} \quad (*) \]

Risk Aversion

A preference relation \(\preceq \) on \(\mathcal{Z} \) is risk-averse, if \(\mathbb{E}[Z|G] \preceq Z \), for every \(Z \in \mathcal{Z} \) and every \(\sigma \)-subalgebra \(G \) of \(\mathcal{F} \).

Convex Rank-Dependent Utility

Suppose a total preorder \(\preceq \) on \(\mathcal{Z} \) is continuous, monotonic, and satisfies the dual independence axiom. Then it is risk-averse if and only if it has the integral representation (*) with a nondecreasing and convex function \(w : [0, 1] \to [0, 1] \) such that \(w(0) = 0 \) and \(w(1) = 1 \).
Two Objectives

- Minimize the expected outcome, the mean $\mathbb{E}[Z_x]$
- Minimize a scalar measure of uncertainty of Z_x, the risk $r[Z_x]$

$$r[Z] = \text{Var}[Z]$$
(Markowitz’ model)

$$\sigma^+_\rho[Z] = (\mathbb{E}[\{(Z - \mathbb{E}[Z])^\rho\}^+])^{1/\rho}$$
(semideviation)

$$\delta^+_\alpha[Z] = \min_\eta \mathbb{E}\left[\max\left(\eta - Z, \frac{\alpha}{1 - \alpha}(Z - \eta)\right)\right]$$
(deviation from quantile)

$r[Z_x]$ is nonlinear w.r.t. probability and possibly nonconvex in x
Example: Portfolio Optimization

\(R_1, R_2, \ldots, R_n \) - random return rates of securities
\(x_1, x_2, \ldots, x_n \) - fractions of the capital invested in the securities

Return rate of the portfolio (negative of)

\[
Z_x = -\left(R_1 x_1 + R_2 x_2 + \cdots + R_n x_n \right)
\]

Risk Optimization with Fixed Mean

\[
\min_{x} \ r\left[Z_x\right] \\
s.t. \ \mathbb{E} \left[Z_x\right] = \mu \quad \text{(parameter)} \\
x \in X_0.
\]

Combined Mean–Risk Optimization

\[
\min_{x \in X_0} \ \rho \left[Z_x\right] = \mathbb{E} \left[Z_x\right] + \kappa r\left[Z_x\right], \quad 0 \leq \kappa \leq \kappa_{max}
\]

Interesting applications of parametric optimization
Suppose Z has finitely many realizations z_1, z_2, \ldots, z_S with probabilities p_1, p_2, \ldots, p_S

$$\rho(Z) = \mathbb{E}[Z] + \kappa \sigma_m^+[Z] = \mathbb{E}[Z] + \kappa \left(\mathbb{E}[(Z - \mathbb{E}Z)^m]_+ \right)^{1/m}$$

$$= \sum_{s=1}^S p_s z_s + \kappa \left(\sum_{s=1}^S p_s \left(z_s - \sum_{j=1}^S p_j z_j \right)_+^m \right)^{1/m}$$

Equivalent Problem (for $m = 1$ - linear programming)

$$\rho(Z) = \min_{v, \mu} \mu + \kappa \left(\sum_{s=1}^S p_s v_s^m \right)^{1/m}$$

s.t.

$$\mu = \sum_{s=1}^S p_s z_s$$

$$v_s \geq z_s - \mu, \quad s = 1, \ldots, S$$

$$v_s \geq 0, \quad s = 1, \ldots, S$$
Suppose the vector of return rates has S realizations with probabilities p_1, p_2, \ldots, p_S

R_{js} - return rate of asset $j = 1, \ldots, n$ in scenario $s = 1, \ldots, S$

Equivalent Problem (for $m = 1$ - linear programming)

$$
\min_{x, z, v, \mu} \quad \mu + \kappa \left(\sum_{s=1}^{S} v_s^m \right)^{1/m} \\
\text{s.t.} \quad \mu = \sum_{s=1}^{S} p_s z_s \\
\quad z_s = - \sum_{j=1}^{n} R_{sj} x_j, \quad s = 1, \ldots, S \\
\quad v_s \geq z_s - \mu, \quad s = 1, \ldots, S \\
\quad v_s \geq 0, \quad s = 1, \ldots, S \\
\quad x \in X_0
$$
Basket of 719 Securities. Mean–Semideviation Model
Key Requirement: Monotonicity

\[\rho(Z) = \mathbb{E}[Z] + \kappa r[Z] \]

Consistency with Stochastic Dominance (Ogryczak–R., 1997)

\[\mathbb{E}[u(Z)] \leq \mathbb{E}[u(W)], \ \forall \text{ nondecreasing and convex } u(\cdot) \Rightarrow \rho[Z] \leq \rho[W] \]

Consistency with Pointwise Order (Artzner et. al., 1999)

\[Z \leq W \text{ a.s. } \Rightarrow \rho[Z] \leq \rho[W] \]

Mean–semideviation and mean–deviation from quantile models are consistent for \(0 \leq \kappa \leq 1 \), but not mean–variance.

Unique optimal solutions of consistent optimization models

\[\min_{x \in X} \rho(Z_x) \]

cannot be strictly dominated (in the corresponding sense)
Coherent Risk Measures

Space of uncertain outcomes \(\mathcal{Z} = \mathcal{L}_p(\Omega, \mathcal{F}, P), \ p \in [1, \infty] \)

A functional \(\rho : \mathcal{Z} \to \overline{\mathbb{R}} \) is a coherent risk measure if it satisfies the following axioms

- **Convexity:** \(\rho(\lambda Z + (1 - \lambda)W) \leq \lambda \rho(Z) + (1 - \lambda)\rho(W) \)
 \(\forall \ \lambda \in (0, 1), \ Z, W \in \mathcal{Z} \)
- **Monotonicity:** If \(Z \leq W \) then \(\rho(Z) \leq \rho(W) \), \(\forall \ Z, W \in \mathcal{Z} \)
- **Translation Equivariance:** \(\rho(Z + a) = \rho(Z) + a \), \(\forall \ Z \in \mathcal{Z}, \ a \in \mathbb{R} \)
- **Positive Homogeneity:** \(\rho(\tau Z) = \tau \rho(Z) \), \(\forall \ Z \in \mathcal{Z}, \ \tau \geq 0 \)

Kijima-Ohnishi (1993) – no monotonicity
Artzner-Delbaen-Eber-Heath (1999–) - space \(\mathcal{L}_\infty \)
R.-Shapiro (2005) – spaces \(\mathcal{L}_p, \ldots \)

Good news: \(\mathbb{E}[Z] \) is coherent
Coherent Risk Measures

Space of uncertain outcomes $\mathcal{Z} = \mathcal{L}_p(\Omega, \mathcal{F}, P)$, $p \in [1, \infty]$

A functional $\rho : \mathcal{Z} \rightarrow \overline{\mathbb{R}}$ is a **coherent risk measure** if it satisfies the following axioms

- **Convexity:** $\rho(\lambda Z + (1 - \lambda) W) \leq \lambda \rho(Z) + (1 - \lambda) \rho(W)$
 \[\forall \lambda \in (0, 1), \ Z, W \in \mathcal{Z} \]

- **Monotonicity:** If $Z \leq W$ then $\rho(Z) \leq \rho(W)$, \[\forall Z, W \in \mathcal{Z} \]

- **Translation Equivariance:** $\rho(Z + a) = \rho(Z) + a$, \[\forall Z \in \mathcal{Z}, a \in \mathbb{R} \]

- **Positive Homogeneity:** $\rho(\tau Z) = \tau \rho(Z)$, \[\forall Z \in \mathcal{Z}, \tau \geq 0 \]

Kijima-Ohnishi (1993) – no monotonicity
Artzner-Delbaen-Eber-Heath (1999–) - space \mathcal{L}_∞

Good news: $E[Z]$ is coherent
Coherent Risk Measures

Space of uncertain outcomes $\mathcal{Z} = \mathcal{L}_p(\Omega, \mathcal{F}, P)$, $p \in [1, \infty]$

A functional $\rho : \mathcal{Z} \rightarrow \overline{\mathbb{R}}$ is a coherent risk measure if it satisfies the following axioms

- **Convexity:** $\rho(\lambda Z + (1 - \lambda) W) \leq \lambda \rho(Z) + (1 - \lambda) \rho(W)$
 \[\forall \lambda \in (0, 1), \ Z, W \in \mathcal{Z} \]

- **Monotonicity:** If $Z \leq W$ then $\rho(Z) \leq \rho(W)$, \[\forall Z, W \in \mathcal{Z} \]

- **Translation Equivariance:** $\rho(Z + a) = \rho(Z) + a$, \[\forall Z \in \mathcal{Z}, a \in \mathbb{R} \]

- **Positive Homogeneity:** $\rho(\tau Z) = \tau \rho(Z)$, \[\forall Z \in \mathcal{Z}, \tau \geq 0 \]

Kijima-Ohnishi (1993) – no monotonicity
Artzner-Delbaen-Eber-Heath (1999–) - space \mathcal{L}_∞
R.-Shapiro (2005) – spaces \mathcal{L}_p, …

Good news: $\mathbb{E}[Z]$ is coherent
Coherent Risk Measures

Space of uncertain outcomes $\mathcal{Z} = \mathcal{L}_p(\Omega, \mathcal{F}, P), \ p \in [1, \infty]$

A functional $\rho : \mathcal{Z} \rightarrow \overline{\mathbb{R}}$ is a coherent risk measure if it satisfies the following axioms

- **Convexity:** $\rho(\lambda Z + (1 - \lambda)W) \leq \lambda \rho(Z) + (1 - \lambda)\rho(W)$
 \[\forall \ \lambda \in (0, 1), \ Z, W \in \mathcal{Z} \]

- **Monotonicity:** If $Z \leq W$ then $\rho(Z) \leq \rho(W)$, \[\forall \ Z, W \in \mathcal{Z} \]

- **Translation Equivariance:** $\rho(Z + a) = \rho(Z) + a$, \[\forall \ Z \in \mathcal{Z}, \ a \in \mathbb{R} \]

- **Positive Homogeneity:** $\rho(\tau Z) = \tau \rho(Z)$, \[\forall \ Z \in \mathcal{Z}, \ \tau \geq 0 \]

Kijima-Ohnishi (1993) – no monotonicity
Artzner-Delbaen-Eber-Heath (1999–) - space \mathcal{L}_∞
R.-Shapiro (2005) – spaces \mathcal{L}_p, …

Good news: $\mathbb{E}[Z]$ is coherent
Coherent Risk Measures

Space of uncertain outcomes $\mathcal{Z} = \mathcal{L}_p(\Omega, \mathcal{F}, P)$, $p \in [1, \infty]$

A functional $\rho : \mathcal{Z} \to \overline{\mathbb{R}}$ is a **coherent risk measure** if it satisfies the following axioms

- **Convexity:** $\rho(\lambda Z + (1 - \lambda)W) \leq \lambda \rho(Z) + (1 - \lambda)\rho(W)$, $\forall \lambda \in (0, 1)$, $Z, W \in \mathcal{Z}$

- **Monotonicity:** If $Z \leq W$ then $\rho(Z) \leq \rho(W)$, $\forall Z, W \in \mathcal{Z}$

- **Translation Equivariance:** $\rho(Z + a) = \rho(Z) + a$, $\forall Z \in \mathcal{Z}, a \in \mathbb{R}$

- **Positive Homogeneity:** $\rho(\tau Z) = \tau \rho(Z)$, $\forall Z \in \mathcal{Z}, \tau \geq 0$

Kijima-Ohnishi (1993) – no monotonicity
Artzner-Delbaen-Eber-Heath (1999–) - space \mathcal{L}_∞
R.-Shapiro (2005) – spaces \mathcal{L}_p, …

Good news: $\mathbb{E}[Z]$ is coherent
Coherent Risk Measures

Space of uncertain outcomes \(\mathcal{Z} = L_p(\Omega, \mathcal{F}, P), \ p \in [1, \infty] \)

A functional \(\rho : \mathcal{Z} \to \overline{\mathbb{R}} \) is a **coherent risk measure** if it satisfies the following axioms

- **Convexity**: \(\rho(\lambda Z + (1 - \lambda) W) \leq \lambda \rho(Z) + (1 - \lambda) \rho(W) \)
 \(\forall \ \lambda \in (0, 1), \ Z, W \in \mathcal{Z} \)

- **Monotonicity**: If \(Z \leq W \) then \(\rho(Z) \leq \rho(W), \ \forall Z, W \in \mathcal{Z} \)

- **Translation Equivariance**: \(\rho(Z + a) = \rho(Z) + a, \ \forall Z \in \mathcal{Z}, a \in \mathbb{R} \)

- **Positive Homogeneity**: \(\rho(\tau Z) = \tau \rho(Z), \ \forall Z \in \mathcal{Z}, \tau \geq 0 \)

Kijima-Ohnishi (1993) – no monotonicity
Artzner-Delbaen-Eber-Heath (1999–) - space \(L_\infty \)
R.-Shapiro (2005) – spaces \(L_p, \ldots \)

Good news: \(\mathbb{E}[Z] \) is coherent
Coherence of Mean–Semideviation

For simplicity, semideviation of order \(m = 1 \) with \(\kappa = 1 \):

\[
\rho(Z) = \mathbb{E}[Z] + \mathbb{E}[(Z - \mathbb{E}Z)_+] = \mathbb{E}\left\{ \max(\mathbb{E}[Z], Z) \right\}
\]

Convexity follows from the convexity of \(Z \mapsto \max(\mathbb{E}[Z], Z) \) a.s.

Monotonicity follows from monotonicity of \(Z \mapsto \max(\mathbb{E}[Z], Z) \) a.s.

Translation follows from translation of \(Z \mapsto \max(\mathbb{E}[Z], Z) \) a.s.

Pos. Homogeneity follows from pos. homogeneity of \(\max(\mathbb{E}[Z], Z) \) a.s.

Convex combination of coherent measures of risk is coherent

\[
\rho(Z) = \lambda_1 \rho_1(Z) + \lambda_2 \rho_2(Z) + \cdots + \lambda_L \rho_L(Z) \\
\lambda_1 + \lambda_2 + \cdots + \lambda_L = 1, \\
\lambda_1 \geq 0, \lambda_2 \geq 0, \ldots, \lambda_L \geq 0
\]

\[
\rho(Z) = \mathbb{E}[Z] + \kappa \mathbb{E}[(Z - \mathbb{E}Z)_+] \text{ is coherent for } \kappa \in [0, 1]
\]
The Value at Risk at level $\alpha \in (0, 1)$ of a random cost $Z \in \mathcal{Z}$:

$$V@R_{\alpha}^+(Z) \triangleq \inf \{ \eta : F_Z(\eta) \geq 1 - \alpha \} = F_Z^{-1}(1 - \alpha)$$

Monotonicity: $Z \leq V \implies V@R_{\alpha}^+(Z) \leq V@R_{\alpha}^+(V)$

Translation: $V@R_{\alpha}^+(Z + c) = V@R_{\alpha}^+(Z) + c$, for all $c \in \mathbb{R}$

Positive Homogeneity: $V@R_{\alpha}^+(\gamma Z) = \gamma V@R_{\alpha}^+(Z)$, for all $\gamma \geq 0$

However, it is not convex

Counterexample: Two independent variables

$$Z = \begin{cases} 0 \text{ with probability } 1 - p, \\ 1 \text{ with probability } p \end{cases} \quad V = \begin{cases} 0 \text{ with probability } 1 - p, \\ 1 \text{ with probability } p \end{cases}$$

For $p < \alpha < 1$ we have $V@R_{\alpha}^+(Z) = V@R_{\alpha}^+(V) = 0$

If $p < \alpha < 1 - (1 - p)^2$, we have non-convexity

$$V@R_{\alpha}^+(\lambda Z + (1 - \lambda) V) > 0 = \lambda V@R_{\alpha}^+(Z) + (1 - \lambda) V@R_{\alpha}^+(V)$$
Average Value at Risk

\[\text{AV@R}_\alpha^+(Z) \triangleq \frac{1}{\alpha} \int_0^\alpha \text{V@R}_\beta^+(Z) \, d\beta \]

If the \((1 - \alpha)\)-quantile of \(Z\) is unique

\[\text{AV@R}_\alpha^+(Z) = \frac{1}{\alpha} \int_{\text{V@R}_\alpha^+(Z)}^\infty z \, dF_Z(z) = \mathbb{E}[Z \mid Z \geq \text{V@R}_\alpha^+(Z)] \]

Extremal representation

\[\text{AV@R}_\alpha^+(Z) = \inf_{\eta \in \mathbb{R}} \left\{ \eta + \frac{1}{\alpha} \mathbb{E}[(Z - \eta)_+] \right\} \]

The minimizer \(\eta = \text{V@R}_\alpha(Z)\)

Connection to weighted deviation from \(\alpha\)-quantile:

\[\delta_\alpha^+(Z) = \text{AV@R}_\alpha^+(Z) - \mathbb{E}[Z], \quad \alpha \in [0, 1]. \]
Extremal representation

\[\text{AV@R}_\alpha^+(Z) = \inf_{\eta \in \mathbb{R}} \left\{ \eta + \frac{1}{\alpha} \mathbb{E}\left[(Z - \eta)_+\right] \right\} \]

Convexity follows from joint convexity in \((\eta, Z)\) of \{\cdots\}

Monotonicity follows from monotonicity w.r.t. \(Z\) of \{\cdots\}

Translation follows from \(\eta \leftrightarrow \eta - c\) in \{\cdots\}

Pos. Homogeneity follows from pos. homogeneity in \((\eta, Z)\) of \{\cdots\}
Suppose Z has finitely many realizations z_1, z_2, \ldots, z_S with probabilities p_1, p_2, \ldots, p_S

\[
\begin{align*}
\min_{\nu, \eta} & \quad \eta + \frac{1}{\alpha} \sum_{s=1}^{S} p_s \nu_s \\
\text{s.t.} & \quad \nu_s \geq z_s - \eta, \quad s = 1, \ldots, S \\
& \quad \nu_s \geq 0, \quad s = 1, \ldots, S
\end{align*}
\]

For portfolios we have to add the constraints

\[
z_s = -\sum_{j=1}^{n} R_{sj} x_j, \quad s = 1, \ldots, S
\]

\[
x \in X_0
\]

and include z and x into the decision variables
Pairing of a linear topological space \(\mathcal{Z} \) with a linear topological space \(\mathcal{Y} \) of regular signed measures on \(\Omega \) with the bilinear form

\[
\langle \mu, Z \rangle = \mathbb{E}_\mu[Z] = \int_{\Omega} Z(\omega) \mu(d\omega)
\]

We assume standard conditions on pairing and the polarity: \((\mathcal{Z}_+)^\circ = \mathcal{Y}_- \)

Dual Representation Theorem

If \(\rho : \mathcal{Z} \rightarrow \overline{\mathbb{R}} \) is a lower semicontinuous* coherent risk measure, then

\[
\rho(Z) = \max_{\mu \in \mathcal{A}} \int_{\Omega} Z(\omega) \mu(d\omega), \quad \forall Z \in \mathcal{Z}
\]

with a convex closed \(\mathcal{A} \subset \mathcal{P} \) (set of probability measures in \(\mathcal{Y} \)).

* Lower semicontinuity is automatic if \(\rho \) is finite and \(\mathcal{Z} \) is a Banach lattice.
Universality of AV@R

$Z \sim V$ means that Z and V have the same distribution, $\mu_Z = \mu_V$.

$\rho : \mathcal{Z} \rightarrow \mathbb{R}$ is law invariant if $Z \sim V \implies \rho(Z) = \rho(V)$

Kusuoka Theorem

If (Ω, \mathcal{F}, P) is atomless and $\rho : L_1(\Omega, \mathcal{F}, P) \rightarrow \mathbb{R}$ is law invariant, then

$$\rho(Z) = \sup_{m \in \mathcal{M}} \int_0^1 AV@R^+_{\alpha}(Z) \ m(d\alpha)$$

where \mathcal{M} is a convex set of probability measures on $(0, 1]$.

Spectral measure

$$\rho(V) = \int_0^1 AV@R^+_{\alpha}(Z) \ m(d\alpha)$$

Spectral measures have dual utility form:

$$\rho(Z) = \int_0^1 F_Z^{-1}(\beta) \ dw(\beta)$$
“Minimize” over $x \in X$ a random outcome $Z_x(\omega) = f(x, \omega), \omega \in \Omega$

Composite Optimization Problem

$$\min_{x \in X} \rho(Z_x)$$ (P)

Theorem

Let $x \mapsto Z_x(\omega)$ be convex and $\rho(\cdot)$ be coherent. Suppose that $\hat{x} \in X$ is an optimal solution of (P) and $\rho(\cdot)$ is continuous at $Z_{\hat{x}}$. Then there exists a probability measure $\hat{\mu} \in \partial \rho(Z_{\hat{x}}) \subseteq \mathcal{A}$ such that \hat{x} solves

$$\min_{x \in X} E_{\hat{\mu}}[Z_x] = \min_{x \in X} \max_{\mu \in \mathcal{A}} E_{\mu}[Z_x]$$

We also have the **duality relation**:

$$\min_{x \in X} \rho(Z_x) = \max \inf_{\mu \in \mathcal{A}} E_{\mu}[Z_x]$$
Duality in Portfolio Optimization - Game Model

Suppose the vector of return rates of assets has S realizations.

- R_{js} - return rate of asset $j = 1, \ldots, n$ in scenario $s = 1, \ldots, S$

Portfolio return (negative) in scenario s

$$Z_s(x) = - \sum_{j=1}^{n} R_{js} x_j$$

Portfolio Problem

$$\min_{x \in X} \rho \left(Z(x) \right)$$

By homogeneity, we may assume that $\sum_{j=1}^{n} x_j = 1$

Equivalent Matrix Game

$$\max_{x \in X} \min_{\mu \in \mathcal{A}} \sum_{j=1}^{n} \sum_{s=1}^{S} x_j R_{js} \mu_s$$

- x - mixed strategy of the investor
- μ - mixed strategy of the opponent (market)
Two-Stage Model

Expected-Value Model

$$\min_{x \in X} c^T x + \mathbb{E}[Q(x)]$$

where $Q(x)$ is the optimal value of the random second-stage problem

$$\min q^T y$$

s.t. $Tx + Wy = h,$

$$y \geq 0,$$

(q, T, h) - random data of the second-stage problem

- c is deterministic
- (q, T, h) become known after the first stage

For finite scenario case - powerful decomposition methods
Two-Stage Model: Risk-Averse Version

\[
\min_{x \in X} \rho_1 \left(c^T x + Q(x) \right)
\]

where \(Q(x) \) is the optimal value of the second-stage problem

\[
Q(x) = \min_{\rho_2} \left(q^T y \right)
\]
\[\text{s.t. } Tx + Wy = h, \]
\[y \geq 0,
\]

and \(\xi = (q, T, h) \) - random data of the second-stage problem

- \(c \) is random
- \((T, h) \) become known after the first stage
- \(q \) may be still unknown (conditional distribution)
Second-stage scenarios: $c_s, T_s, h_s, s = 1, \ldots, S$
Final scenarios: $q_{sj}, j \in J(s)$

$$\min_{x \in X} \rho_1 \left(c^T x + Q(x) \right)$$

where $Q(x)$ is the optimal value of the second-stage problem; In scenario s its value is

$$Q_s(x) = \min \rho_{2s} \left(q_s^T y \right)$$

s.t. $T_s x + W y = h_s,$

$$y \geq 0,$$

q_s is random and has realizations $q_{sj}, j \in J(s)$

This structure of the problem follows from the general theory of dynamic measures of risk (lecture tomorrow)
Dual Representation of the Two-Stage Problem

Risk-averse first-stage problem

\[
\min_{x \in X} \max_{\mu \in A} \sum_{s=1}^{S} \mu_s \left[c_s^T x + Q_s(x) \right]
\]

Risk-averse second-stage problem

\[
Q_s(x) = \min_y \max_{\nu \in B_s} \sum_{j \in J(s)} \nu_j q_j^T y \\
\text{s.t. } T_s x + W_s y = h_s \quad \text{(multipliers } \pi_s) \\
y \geq 0
\]

The sets of probability measures:

\[
A = \partial \rho_1(0) \\
B_s = \partial \rho_{2s}(0)
\]
Stochastic Dominance Constraints (Dentcheva–R., 2003–)

\(Z_x \) - random outcome (e.g., cost)

\(Y \) - benchmark random outcome, e.g. \(Y(\omega) = Z_{\bar{x}}(\omega) \) for some \(\bar{x} \in X \)

New Model

\[
\begin{align*}
\min & \quad \mathbb{E}[Z_x] \\
\text{subject to} & \quad Z_x \preceq_u Y \\
& \quad x \in X
\end{align*}
\]

(or some other objective)

(stochastic ordering constraint)

\(Z_x \) is preferred over \(Y \) by all decision makers having disutility functions in the generator \(\mathcal{U} \):

\[
\mathbb{E}[u(Z_x)] \leq \mathbb{E}[u(Y)] \quad \forall \ u \in \mathcal{U}
\]

All nondecreasing \(u(\cdot) \) - first order stochastic dominance \(\preceq_{st} \)

All nondecreasing convex \(u(\cdot) \) - increasing convex order \(\preceq_{icx} \)
Dominance Constrained Optimization

\[\min \mathbb{E}[Z_x] \]
subject to \(Z_x \preceq_{icx} Y \)
\(x \in X \)

\(X \) - convex set in \(X \) (separable locally convex Hausdorff vector space)

\(x \mapsto Z_x \) is a continuous operator from \(X \) to \(L_1(\Omega, \mathcal{F}, P) \)

\(x \mapsto Z_x(\omega) \) is convex for \(P \)-almost all \(\omega \in \Omega \)

Primal: \(\mathbb{E}[u(Z_x)] \leq \mathbb{E}[u(Y)] \) for all convex nondecreasing \(u : \mathbb{R} \rightarrow \mathbb{R} \)

Inverse: \(\int_0^1 F^{-1}_{Z_x}(p) \, dw(p) \leq \int_0^1 F^{-1}_Y(p) \, dw(p) \) for all convex nondecreasing \(w : [0, 1] \rightarrow \mathbb{R} \)

Main Results

- Utility functions \(u : \mathbb{R} \rightarrow \mathbb{R} \) and rank dependent utility functions \(w : [0, 1] \rightarrow \mathbb{R} \) play the roles of Lagrange multipliers

- Expected utility models and rank dependent utility models are Lagrangian relaxations of the problem
Implied Utility Function

Lagrangian in Direct Form

\[
L(x, u) = \mathbb{E}[Z_x + u(Z_x) - u(Y)]
\]

\(u(\cdot)\) - convex function on \(\mathbb{R}\)

Theorem

Assume Uniform Dominance Condition (a form of Slater constraint qualification). If \(\hat{x}\) is an optimal solution of the problem then there exists a function \(\hat{u} \in \mathcal{U}\) such that

\[
L(\hat{x}, \hat{u}) = \min_{x \in X} L(x, \hat{u})
\]

(1)

\[
\mathbb{E}[^{\hat{u}}(Z_{\hat{x}})] = \mathbb{E}[^{\hat{u}}(Y)]
\]

(2)

Conversely, if for some function \(\hat{u} \in \mathcal{U}\) an optimal solution \(\hat{x}\) of (1) satisfies the dominance constraint and (2), then \(\hat{x}\) is optimal.
Implied Rank Utility (Distortion) Function

Lagrangian in Inverse Form

\[\Phi(x, w) = \int_0^1 F_{Z_x}^{-1}(p) \, d(p + w(p)) - \int_0^1 F_Y^{-1}(p) \, dw(p) \]

\(w(\cdot) \) - convex function on [0, 1]

Theorem

Assume Uniform Dominance Condition (a form of Slater constraint qualification). If \(\hat{x} \) is an optimal solution of the problem, then there exists a function \(\hat{w} \in \mathcal{W} \) such that

\[\Phi(\hat{x}, \hat{w}) = \min_{x \in \mathcal{X}} \Phi(x, \hat{w}) \quad (3) \]

\[\int_0^1 F_{Z_{\hat{x}}}^{-1}(p) \, d\hat{w}(p) = \int_0^1 F_Y^{-1}(p) \, d\hat{w}(p) \quad (4) \]

If for some \(\hat{w} \in \mathcal{W} \) an optimal solution \(\hat{x} \) of (3) satisfies the inverse dominance constraint and (4), then \(\hat{x} \) is optimal