Stochastic Integer Programming

JIM LUEDTKE
Dept. of Industrial and Systems Engineering
Wisconsin Institute for Discovery
University of Wisconsin-Madison, USA
jim.luedtke@wisc.edu

XIV International Conference on Stochastic Programming
Buzios, Brazil
June 25, 2016
Outline

1. Introduction
2. Integer Programming Background
3. Cut Based Methods (Branch-and-Cut/Benders)
4. Lagrangian Relaxation Based Methods (Dual Decomposition)
5. Odds and Ends
Stochastic Mixed Integer Program (SMIP)

\[
\begin{align*}
\min & \quad c^\top x + \mathbb{E}[Q(x, \xi)] \\
\text{s.t.} & \quad Ax \geq b \\
& \quad x \in \mathbb{R}^{n_1}_+ \times \mathbb{Z}^{p_1}_+
\end{align*}
\]

where \(\xi = (q, h, T, W) \) and

\[
Q(x, \xi) = \min q^\top y \\
\text{s.t.} & \quad Wy = h - Tx \\
& \quad y \in \mathbb{R}^{n_2}_+ \times \mathbb{Z}^{p_2}_+
\]

- \(x \): first-stage decision variables
- \(y \): second-stage decision variables
- Sometimes assume \(n_1, p_1, n_2, \) or \(p_2 \) are zero
Example applications

Stochastic service system design (facility location)
- Random customer demands
- First-stage decisions: which service centers to open (binary)
- Second-stage decisions: which customers served by which servers (binary or continuous)

Stochastic vehicle routing (a priori routing)
- Random customer demands
- First-stage decisions: planned vehicle routes (binary)
- Second-stage decisions: recourse actions when capacity violated (binary or continuous)

Stochastic unit commitment
- Random electricity loads and wind/solar production
- First-stage decisions: units to commit and when (binary)
- Second-stage decisions: production amounts, line switching (binary or continuous)
We focus only on the two-stage SMIP problem

Many interesting topics we won’t cover, e.g.,

- Multistage
- Risk-averse
- Chance constraints
Finite scenario model

We assume the random data ξ is represented by a finite set of scenarios:

- $(q^s, h^s, T^s, W^s), s = 1, \ldots, S$
- Scenario s occurs with probability p_s
- S should not be too large!

Sample Average Approximation

[McK et al., 1999, Kleywegt et al., 2001, Ahmed and Shapiro, 2002]

- Medium accuracy approximation can be obtained by Monte Carlo sampling
- Required sample size grows linearly with number of first-stage variables
- Replicating SAA problems yields statistical estimates of optimality
- Key challenge: Solving the SAA problem for “large enough” S
Example: Stochastic facility location

Problem setup

A firm is deciding which facilities to open to serve customers with random demands. Goal is to minimize total (expected) cost.

Notation:

- I: Set of possible facilities to open
- J: Set of customers
- f_i: Fixed cost for opening facility i
- C_i: Capacity of facility i
- c_{ij}: Unit cost for serving customer j demand at facility i
- q_j: Penalty per unit of unmet demand of customer j
- p_s: Probability of scenario s, $s = 1, \ldots, S$
- d^s_j: Demand of customer demand j in scenario s
Example: Stochastic facility location

First-stage integer variables: \(x_i = 1 \) if facility \(i \) is open, 0 otherwise

\[
\min_x \sum_{i \in I} f_i x_i + \sum_{s \in S} p_s Q_s(x) \\
\text{s.t. } x_i \in \{0, 1\}, \quad i \in I
\]

where

\[
Q_s(x) = \min_{x,y} \sum_{i \in I} \sum_{j \in J} c_{ij} y_{ij} + \sum_{j \in J} q_j z_j \\
\text{s.t. } \sum_{i \in I} y_{ij} + z_j \geq d_j^s, \quad j \in J \\
\sum_{j \in J} y_{ij} \leq C_i x_i, \quad i \in I \\
y_{ij} \geq 0, z_j \geq 0, \quad i \in I, j \in J
\]
First option for solving a SMIP with finite scenarios

Extensive form (deterministic equivalent) of an SMIP

\[
\begin{align*}
\min & \quad c^T x + \sum_{s=1}^{S} p_s q_s^T y_s \\
\text{s.t.} & \quad Ax \geq b \\
& \quad T_s x + W_s y_s = h_s \\
& \quad x \in \mathbb{R}_{+}^{n_1} \times \mathbb{Z}_{+}^{p_1} \\
& \quad y_s \in \mathbb{R}_{+}^{n_2} \times \mathbb{Z}_{+}^{p_2}, \quad s = 1, \ldots, S
\end{align*}
\]
Example: Stochastic facility location

\[
\begin{align*}
\min_{x,y,z} & \quad \sum_{i \in I} f_i x_i + \sum_{s \in S} p_s \sum_{i \in I} \sum_{j \in J} c_{ij} y_{ij} s + \sum_{s \in S} p_s \sum_{j \in J} q_j z_{js} \\
\text{s.t.} & \quad \sum_{i \in I} y_{ij} s + z_{js} \geq d_j^s, \quad j \in J, s \in S \\
& \quad \sum_{j \in J} y_{ij} s \leq C_i x_i, \quad i \in I, s \in S \\
& \quad x_i \in \{0, 1\}, \quad i \in I \\
& \quad z_{js} \geq 0, y_{ij} \geq 0, \quad i \in I, j \in J, s \in S
\end{align*}
\]
What makes SMIP hard?

Stochastic integer programming combines challenges from Integer programming and Stochastic Programming

Integer programming challenges
- Huge number of discrete options
- Weak relaxations can lead to huge enumeration trees

Stochastic programming challenges
- Evaluating expectation
- Huge size even with finite scenario approximation

Key questions
- Approximate expected value (SAA)
- Obtain strong relaxations
- Decompose large problem into smaller subproblems
- Preserve relaxation strength when doing decomposition
- Converge to optimal solution
Basic idea behind most algorithms for solving integer programming problems

- Solve a *relaxation* of the problem
 - Some constraints are ignored or replaced with less stringent constraints
- Gives a lower *bound* on the true optimal value
- If the relaxation solution is feasible, it is optimal
- Otherwise, divide the feasible region (*branch*) and repeat
Linear programming relaxation

Mixed-integer program:

\[z_{IP} = \min \, c^\top x \]
\[Ax \geq b \]
\[x \in \mathbb{R}_+^n \times \mathbb{Z}_+^p \]

Linear programming relaxation:

\[z_{LP} = \min \, c^\top x \]
\[Ax \geq b \]
\[x \geq 0 \]

Simple observation

\[z_{LP} \leq z_{IP} \]
Branching: The “divide” in “Divide-and-conquer”

Generic optimization problem:

$$z^* = \min \{ c^T x : x \in S \}$$

Consider subsets S_1, \ldots, S_k of S which cover S: $S = \bigcup_i S_i$. Then

$$\min \{ c^T x : x \in S \} = \min_{1 \leq i \leq k} \left\{ \min \{ c^T x : x \in S_i \} \right\}$$

In other words, we can optimize over each subset separately.

- Usually want S_i sets to be disjoint ($S_i \cap S_j = \emptyset$ for all $i \neq j$)

Dividing the original problem into subproblems is called branching
Bounding: The “conquer” in “Divide-and-conquer”

Any feasible solution to the problem provides an upper bound U on the optimal solution value. ($\hat{x} \in S \Rightarrow z^* \leq c^\top \hat{x}$).

- We can use heuristics to find a feasible solution \hat{x}

After branching, for each subproblem i we solve a relaxation yielding a lower bound $\ell(S_i)$ on the optimal solution value for the subproblem.

- Overall Bound: $L = \min_i \ell(S_i)$

Key: If $\ell(S_i) \geq U$, then we don’t need to consider subproblem i.

In deterministic MIP, we usually get the lower bound by solving the LP relaxation, but there are other ways too.
Let z_{IP} be the optimal value of the MIP

Solve the relaxation of the original problem:

1. If unbounded \Rightarrow the MIP is unbounded or infeasible.
2. If infeasible \Rightarrow MIP is infeasible.
3. If we obtain a feasible solution for the MIP \Rightarrow it is an optimal solution to MIP. ($L = z_{IP} = U$)
4. Else \Rightarrow Lower Bound. ($L = z_{Rel}$).

In the first three cases, we are finished.

In the final case, we must **branch** and recursively solve the resulting subproblems.
Terminology

- Subproblems (nodes) form a search tree
- Eliminating a problem from further consideration is called pruning
- The act of bounding and then branching is called processing
- A subproblem that has not yet been processed is called a candidate
- The set of candidates is the candidate list
Branch and bound algorithm

1. Derive an bound U using a heuristic method (if possible).
2. Put the original problem on the candidate list.
3. Select a problem S from the candidate list and solve the relaxation to obtain the bound $\ell(S)$
 - Relaxation infeasible \Rightarrow node can be pruned.
 - $\ell(S) < U$ and the solution is feasible for the MIP \Rightarrow set $U \leftarrow \ell(S)$.
 - $\ell(S) \geq U$ \Rightarrow node can be pruned.
 - Otherwise, branch. Add the new subproblems to the list.
4. If the candidate list is nonempty, go to Step 3. Otherwise, the algorithm is completed.
How long does branch-and-bound take?

Simple approximation:

Total time = (Time to process a node) × (Number of nodes)

Both can be very important:

- For **very** large instances (as in stochastic programming), solving a single relaxation can be too time-consuming
- Number of nodes can grow exponentially in number of decision variables if do not prune often enough

Keys to success

- Solve relaxations fast (enough)
- Obtain **strong relaxations** so that can prune high in tree

Also important (but less so):

- Make good branching decisions (limits size of tree)
- Obtain good feasible solutions early (e.g., good heuristics)
Formulations in MIP

Integer programs can often be formulated in multiple ways

- E.g., facility location problem

 \(x_i = 1 \) if facility \(i \) is open, \(y_{ij} = \) customer \(j \) demand served from facility \(i \)

- Formulation we used earlier:

 \[
 \sum_{j \in J} y_{ij} \leq C_i x_i, \quad \forall i \in I
 \]

- Redundant constraints:

 \[
 y_{ij} \leq \min\{d_j^s, C_i\} x_i, \quad \forall i \in I, j \in J
 \]

- Set of integer feasible points satisfying these are the same

- But many fractional points that satisfy original formulation do not satisfy the redundant constraints
Given two formulations, which is better?

- **Option 1**: Fewer constraints ⇒ Faster LP relaxation solution

\[
\sum_{j \in J} y_{ij} \leq C_i x_i, \quad \forall i \in I
\]

- **Option 2**: Better LP relaxations ⇒ Prune more often

\[
\sum_{j \in J} y_{ij} \leq C_i x_i, \quad \forall i \in I, \quad y_{ij} \leq \min\{d_j^s, C_i\} x_i, \quad \forall i \in I, j \in J
\]

Using the formulation with **better bound** is almost always (much) better.

- May need to use specialized techniques to solve larger relaxation
Example: Stochastic facility location revisited

\[
\begin{align*}
\min_{x, y, z} & \quad \sum_{i \in I} f_i x_i + \sum_{s \in S} p_s \sum_{i \in I} \sum_{j \in J} c_{ij} y_{ijs} + \sum_{s \in S} \sum_{j \in J} p_s q_j z_{js} \\
\text{s.t.} & \quad \sum_{i \in I} y_{ijs} + z_{js} \geq d^s_j, \quad j \in J, s \in S \\
& \quad \sum_{j \in J} y_{ijs} \leq C_i x_i, \quad i \in I, s \in S \\
& \quad y_{ijs} \leq \min\{d^s_j, C_i\} x_i, \quad i \in I, j \in J, s \in S \\
& \quad x_i \in \{0, 1\}, \quad i \in I \\
& \quad z_{js} \geq 0, y_{ijs} \geq 0, \quad i \in I, j \in J, s \in S
\end{align*}
\]
Let $X = \{ x \in \mathbb{R}^n_+ : Ax \leq b, x_j \in \mathbb{Z}, j \in J \}$

Definition

An inequality $\pi x \leq \pi_0$ is a **valid inequality** for X if $\pi x \leq \pi_0$ for all $x \in X$.

$(\pi \in \mathbb{R}^n, \pi_0 \in \mathbb{R})$

- Valid inequalities are also called “cutting planes” or “cuts”
- Goal of adding valid inequalities to a formulation: improve relaxation bound ⇒ explore fewer branch-and-bound nodes

Key questions

- How to find valid inequalities?
- How to use them in a branch-and-bound algorithm?
Using valid inequalities

1. Add them to the initial formulation
 - Creates a formulation with better LP relaxation
 - Feasible only when you have a “small” set of valid inequalities
 - Easy to implement

2. Add them only as needed to cut off fractional solutions
 - Solve LP relaxation, cut off solution with valid inequalities, repeat
 - **Cut-and-branch**: Do this *only* with the initial LP relaxation (root node)
 - **Branch-and-cut**: Do this at all nodes in the branch-and-bound tree

Trade-off with increasing effort generating cuts

+ Fewer nodes from better bounds
- More time finding cuts and solving LP
Branch-and-cut

At each node in branch-and-bound tree

1. Solve current LP relaxation $\Rightarrow \hat{x}$
2. Attempt to generate valid inequalities that cut off \hat{x}
3. If cuts found, add to LP relaxation and go to step 1

Why branch-and-cut?

- Reduce number of nodes to explore with improved relaxation bounds
- Add inequalities required to define feasible region

This approach is the heart of all modern MIP solvers
Deriving valid inequalities

General purpose valid inequalities

- Assume only that you have a (mixed or pure) integer set described with inequalities

\[X = \{ x \in \mathbb{R}^n_+ : Ax \leq b, x_j \in \mathbb{Z}, j \in J \} \]

- Critical to success of deterministic MIP solvers

Structure-specific valid inequalities

- Rely on particular structure that appears in a problem
- Combinatorial optimization problems: matching, traveling salesman problem, set packing, ...
- Knapsack constraints: \(\{ x \in \mathbb{Z}^n_+ : ax \leq b \} \)
- Flow balance with variable upper bounds, etc.
Let \(P = \{ x \in \mathbb{R}^n_+ : Ax \leq b \} \) and
\[X = \{ x \in P : x_j \in \mathbb{Z}, \text{ for } j \in J \} \]

Let \(\pi \in \mathbb{Z}^n \) be such that \(\pi_j = 0 \) for all \(j \notin J \), and \(\pi_0 \in \mathbb{Z} \)

\(\pi x \) is integer for all \(x \in X \)

\(x \in X \Rightarrow \) either \(\pi x \leq \pi_0 \) or \(\pi x \geq \pi_0 + 1 \)

So \(X \subset P_0 \cup P_1 \) where

\[P_0 = \{ x \in P : \pi x \leq \pi_0 \} \]
\[P_1 = \{ x \in P : \pi x \geq \pi_0 + 1 \} \]

An inequality valid for \(P_0 \cup P_1 \) is called a split cut
Finding violated split cuts

Separation problem

Given an LP relaxation solution \(\hat{x} \), find a valid inequality that “cuts off” \(\hat{x} \), or prove none exists.

When the split disjunction \(\pi x \leq \pi_0, \pi x \geq \pi_0 + 1 \) is fixed

- A split cut, if one exists, can be obtained by solving a linear program

How to choose the split disjunction?

- Difficult problem in general
- Lift-and-project cuts: Restrict to \(x_j \leq 0 \) and \(x_j \geq 1 \) for binary variables \(x_j \)
- Many other heuristics

Split cuts closely related to Gomory mixed-integer cuts and mixed-integer rounding cuts
LP relaxation of SMIP

Stochastic MIP

\[
\begin{align*}
\min & \quad c^T x + \sum_{s=1}^{S} p_s \theta_s \\
\text{s.t.} & \quad A x \geq b \\
& \quad \theta_s \geq Q_s(x), \quad s = 1, \ldots, S \\
& \quad x \in \mathbb{R}_{+}^{n_1} \times \mathbb{Z}_{+}^{p_1}
\end{align*}
\]

where for \(s = 1, \ldots, S \)

\[
Q_s(x) = \min q_s^T y \\
\text{s.t.} \quad W_s y = h_s - T_s x \\
& \quad y \in \mathbb{R}_{+}^{n_2} \times \mathbb{Z}_{+}^{p_2}
\]

LP Relaxation

\[
\begin{align*}
\min & \quad c^T x + \sum_{s=1}^{S} p_s \theta_s \\
\text{s.t.} & \quad A x \geq b \\
& \quad \theta_s \geq Q_s^{LP}(x), \quad s = 1, \ldots, S \\
& \quad x \in \mathbb{R}_{+}^{n_1} \times \mathbb{R}_{+}^{p_1}
\end{align*}
\]

where for \(s = 1, \ldots, S \)

\[
Q_s^{LP}(x) = \min q_s^T y \\
\text{s.t.} \quad W_s y = h_s - T_s x \\
& \quad y \in \mathbb{R}_{+}^{n_2} \times \mathbb{R}_{+}^{p_2}
\]
Benders Decomposition (L-Shaped Method)

\[(\text{MP})^{LP}_{t}: \min_{\theta,x} \ c^T x + \sum_{s=1}^{S} p_s \theta_s \]
\[\text{s.t. } Ax \geq b, x \in \mathbb{R}_{+}^{n_1} \times \mathbb{R}_{+}^{p_1} \]
\[e \theta_s \geq d_{s,t} + B_{s,t} x, \ s = 1, \ldots, S,\]

\[(\text{SP})^{s}: Q_s^{LP}(\hat{x}) := \min_{y_s} q_s^T y_s \]
\[\text{s.t. } W_s y_s \geq h_s - T_s \hat{x} \]
\[y \in \mathbb{R}_{+}^{n_2} \times \mathbb{R}_{+}^{p_2}\]

- Converges after finitely many iterations
- Improvements: trust region/level stabilization, modified subproblem
- Variant: Single cut aggregated over scenarios
Simplest case: Continuous recourse

\[
\min \ c^T x + \sum_{s=1}^{S} p_s \theta_s \\
\text{s.t. } Ax \geq b \\
\theta_s \geq Q_s(x), \quad s = 1, \ldots, S \\
x \in \mathbb{R}_{+}^{n_1} \times \mathbb{Z}_{+}^{p_1}
\]

where for \(s = 1, \ldots, S \)

\[
Q_s(x) = \min \ q_s^T y \\
\text{s.t. } W_s y = h_s - T_s x \\
y \in \mathbb{R}_{+}^{n_2}
\]
Method 1: Basic Benders decomposition

\[(MP)^{LP}_t : \min_{\theta, x} c^T x + \sum_{s=1}^{S} p_s \theta_s \]

\[\text{s.t. } Ax \geq b, x \in \mathbb{R}^{n_1}_{+} \times \mathbb{Z}^{p_1}_{+} \]
\[e \theta_s \geq d_{s,t} + B_{s,t} x, \quad s = 1, \ldots, S, \]

\[(SP)^s : Q^{LP}_{s}(\hat{x}) := \min_{y_s} q_s^T y_s \]

\[\text{s.t. } W_s y_s \geq h_s - T_s \hat{x} \]
\[y \in \mathbb{R}^{n_2}_{+} \]

- Converges after finitely many iterations
- Master problem is a mixed-integer program
Example: Facility location

Example data:

- Three possible facilities and four customers
- Fixed costs: $f = [120, 100, 90]$
- Capacity: $C = [26, 25, 18]$
- Two equally likely scenarios: $d^1 = [12, 8, 6, 11], \quad d^2 = [8, 11, 7, 6]$
- Penalty for unmet demand: $q_j = 20$

Iteration 1: Master problem (no θ variable yet)

$$\min 120x_1 + 100x_2 + 90x_3$$

s.t. $x_i \in \{0, 1\}, \quad i = 1, 2, 3$

Optimal solution: $\hat{x} = (0, 0, 0)$

Optimal value (lower bound on SMIP): 0
Example: Iteration 1

Subproblems with $\hat{x} = (0, 0, 0)$:

\[
\begin{align*}
\min & \quad \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} y_{ij} + \sum_{j=1}^{4} 30 z_j \\
\text{s.t.} & \quad \sum_{i=1}^{4} y_{ij} + z_j = d_j^1, \forall j \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 26 \cdot 0 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 25 \cdot 0 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 18 \cdot 0 \\
& \quad y_{ij} \geq 0, z_j \geq 0
\end{align*}
\]

Yields Benders cut:

$\theta_1 \geq 1140 - 728x_1 - 675x_2 - 468x_3$

Upper bound: $\sum_i f_i \hat{x}_i + \sum_s p_s Q_s(\hat{x}) = 0 + 1/2(1140 + 990) = 1065$

\[
\begin{align*}
\min & \quad \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} y_{ij} + \sum_{j=1}^{4} 30 z_j \\
\text{s.t.} & \quad \sum_{i=1}^{4} y_{ij} + z_j = d_j^2, \forall j \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 26 \cdot 0 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 25 \cdot 0 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 18 \cdot 0 \\
& \quad y_{ij} \geq 0, z_j \geq 0
\end{align*}
\]

Yields Benders cut:

$\theta_2 \geq 990 - 728x_1 - 675x_2 - 468x_3$
Example: Iteration 2

Updated master problem

\[
\begin{align*}
\text{min} & \quad 120x_1 + 100x_2 + 90x_3 + 1/2(\theta_1 + \theta_2) \\
\text{s.t.} & \quad \theta_1 \geq 1140 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_2 \geq 990 - 728x_1 - 675x_2 - 468x_3 \\
& \quad x_i \in \{0, 1\}, \, i = 1, 2, 3
\end{align*}
\]

Optimal solution: \(\hat{x} = (0, 1, 1), \, \hat{\theta} = (0, 0)\)
Optimal value (lower bound on SMIP): 190
Subproblems with $\hat{x} = (0, 1, 1)$:

$$\begin{align*}
\text{min} & \quad \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} y_{ij} + \sum_{j=1}^{4} 30 z_j \\
\text{s.t.} & \quad \sum_{i=1}^{4} y_{ij} + z_j = d_j^1, \quad \forall j \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 26 \cdot 0 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 25 \cdot 1 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 18 \cdot 1 \\
& \quad y_{ij} \geq 0, \quad z_j \geq 0
\end{align*}$$

Yields Benders cut:

$$\theta_1 \geq 200 - 130 x_1 - 18 x_3$$

Upper bound: $\sum_i f_i \hat{x}_i + \sum_s p_s Q_s(\hat{x}) = 190 + 1/2(182 + 142) = 352$

Yields Benders cut:

$$\theta_2 \geq 142 - 104 x_1$$
Example: Iteration 3

Updated master problem

\[
\begin{align*}
\text{min} & \quad 120x_1 + 100x_2 + 90x_3 + \frac{1}{2}(\theta_1 + \theta_2) \\
\text{s.t.} & \quad \theta_1 \geq 1140 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_1 \geq 200 - 130x_1 - 18x_3 \\
& \quad \theta_2 \geq 990 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_2 \geq 142 - 104x_1 \\
& \quad x_i \in \{0, 1\}, \ i = 1, 2, 3
\end{align*}
\]

Optimal solution: \(\hat{x} = (1, 0, 1), \ \hat{\theta} = (52, 38) \)
Optimal value (lower bound on SMIP): 255
Example: Iteration 3

Subproblems with \(\hat{x} = (1, 0, 1) \):

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} y_{ij} + \sum_{j=1}^{4} 30 z_j \\
\text{s.t.} & \quad \sum_{i=1}^{4} y_{ij} + z_j = d_j^1, \quad \forall j \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 26 \cdot 1 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 25 \cdot 0 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 18 \cdot 1 \\
& \quad y_{ij} \geq 0, \ z_j \geq 0
\end{align*}
\]

Yields Benders cut:

\[
\theta_1 \geq 237 - 26x_1 - 125x_2
\]

Upper bound: \(\sum_i f_i \hat{x}_i + \sum_s p_s Q_s(\hat{x}) = 210 + 1/2(211 + 182) = 406.5 \)

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} y_{ij} + \sum_{j=1}^{4} 30 z_j \\
\text{s.t.} & \quad \sum_{i=1}^{4} y_{ij} + z_j = d_j^2, \quad \forall j \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 26 \cdot 1 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 25 \cdot 0 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 18 \cdot 1 \\
& \quad y_{ij} \geq 0, \ z_j \geq 0
\end{align*}
\]

Yields Benders cut:

\[
\theta_2 \geq 208 - 26x_1 - 125x_2
\]
Example: Iteration 5 (skipped one!)

Updated master problem

\[
\begin{align*}
\text{min} & \quad 120x_1 + 100x_2 + 90x_3 + 1/2(\theta_1 + \theta_2) \\
\text{s.t.} & \quad \theta_1 \geq 1140 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_1 \geq 200 - 130x_1 - 18x_3 \\
& \quad \theta_1 \geq 237 - 26x_1 - 125x_2 \\
& \quad \theta_1 \geq 141 - 36x_3 \\
& \quad \theta_2 \geq 990 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_2 \geq 142 - 104x_1 \\
& \quad \theta_2 \geq 208 - 26x_1 - 125x_2 \\
& \quad \theta_2 \geq 124 - 36x_3 \\
& \quad x_i \in \{0, 1\}, i = 1, 2, 3
\end{align*}
\]

Optimal solution: \(\hat{x} = (0, 1, 1), \hat{\theta} = (182, 142) \)

Optimal value (lower bound on SMIP): 352

- Matches upper bound from Iteration 2 ⇒ Optimal
- Subproblems yield no violated cuts
Recap: Basic Benders algorithm

Basic Benders for SMIP with continuous recourse

Repeat until no cuts found:

1. Solve Benders master mixed-integer program
2. Solve scenario LP subproblems, generate cuts, and add to Benders master.

Limitation

Solving the MIP in step 1 can become very time-consuming

- Tends to become more difficult as more cuts are added
- Unlike an LP, MIP master cannot be effectively warm-started ⇒ Significant “redundant” work

Alternative

Add Benders cuts as needed during a single branch-and-cut process.
Method 2: Branch-and-cut with Benders cuts

Initialize Benders master problem with Benders cuts
- E.g., solve the LP relaxation via Benders and keep cuts

Begin branch-and-cut algorithm. At each node in the search tree:
- Solve LP relaxation $\Rightarrow (\hat{x}, \hat{\theta})$
- If LP bound exceeds known incumbent, prune.
- If \hat{x} is integer feasible: $(\hat{x}, \hat{\theta})$ might not be feasible!
 - Solve scenario subproblems to generate Benders cuts
 - If $(\hat{\theta}_s, \hat{x})$ violates any Benders cut, add cut to LP relaxation and re-solve.
- If \hat{x} not integer feasible:
 - Optional: Solve scenario subproblems and add Benders cuts if violated
 - Else: Branch to create new nodes

Cuts added when \hat{x} is integer feasible are known as lazy cuts in MIP solvers (add via cut callback routine).
Example revisited: Initialization

First, solve the LP relaxation via Benders

Iteration 1: Master linear problem (no θ variable yet)

\[
\begin{align*}
\text{min} & \quad 120x_1 + 100x_2 + 90x_3 \\
\text{s.t.} & \quad 0 \leq x_i \leq 1, \quad i = 1, 2, 3
\end{align*}
\]

Optimal solution: $\hat{x} = (0, 0, 0)$

Optimal value (lower bound on SMIP): 0
Example: Iteration 1

Subproblems with $\hat{x} = (0, 0, 0)$:

<table>
<thead>
<tr>
<th>Min</th>
<th>$\sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} y_{ij} + \sum_{j=1}^{4} 30 z_j$</th>
<th>Min</th>
<th>$\sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} y_{ij} + \sum_{j=1}^{4} 30 z_j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.t.</td>
<td>$\sum_{i=1}^{4} y_{ij} + z_j = d^1_j$, $\forall j$</td>
<td>S.t.</td>
<td>$\sum_{i=1}^{4} y_{ij} + z_j = d^2_j$, $\forall j$</td>
</tr>
<tr>
<td></td>
<td>$\sum_{j=1}^{4} y_{ij} \leq 26 \cdot 0$</td>
<td></td>
<td>$\sum_{j=1}^{4} y_{ij} \leq 26 \cdot 0$</td>
</tr>
<tr>
<td></td>
<td>$\sum_{j=1}^{4} y_{ij} \leq 25 \cdot 0$</td>
<td></td>
<td>$\sum_{j=1}^{4} y_{ij} \leq 25 \cdot 0$</td>
</tr>
<tr>
<td></td>
<td>$\sum_{j=1}^{4} y_{ij} \leq 18 \cdot 0$</td>
<td></td>
<td>$\sum_{j=1}^{4} y_{ij} \leq 18 \cdot 0$</td>
</tr>
<tr>
<td></td>
<td>$y_{ij} \geq 0$, $z_j \geq 0$</td>
<td></td>
<td>$y_{ij} \geq 0$, $z_j \geq 0$</td>
</tr>
</tbody>
</table>

Yields Benders cut:

$\theta_1 \geq 1140 - 728x_1 - 675x_2 - 468x_3$

Upper bound (because \hat{x} is integer feasible!):

$\sum_i f_i \hat{x}_i + \sum_s p_s Q_s(\hat{x}) = 0 + 1/2(1140 + 990) = 1065$
Example: Iteration 2

Updated master linear program

$$\begin{align*}
\text{min} & \quad 120x_1 + 100x_2 + 90x_3 + 1/2(\theta_1 + \theta_2) \\
\text{s.t.} & \quad \theta_1 \geq 1140 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_2 \geq 990 - 728x_1 - 675x_2 - 468x_3 \\
& \quad 0 \leq x_i \leq 1, i = 1, 2, 3
\end{align*}$$

Optimal solution: $\hat{x} = (0.639, 1, 0), \hat{\theta} = (0, 0)$
Optimal value (lower bound on SMIP): 176.6
Example: Iteration 2

Subproblems with $\hat{x} = (0.639, 1, 0)$:

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} y_{ij} + \sum_{j=1}^{4} 30 z_j \\
\text{s.t.} & \quad \sum_{i=1}^{4} y_{ij} + z_j = d_j^1, \ \forall j \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 26 \cdot 0.639 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 25 \cdot 1 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 18 \cdot 0 \\
& \quad y_{ij} \geq 0, z_j \geq 0
\end{align*}
\]

Yields Benders cut:

\[
\theta_1 \geq 179 - 52x_1 - 72x_3
\]

No upper bound because \hat{x} is not integer feasible

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} y_{ij} + \sum_{j=1}^{4} 30 z_j \\
\text{s.t.} & \quad \sum_{i=1}^{4} y_{ij} + z_j = d_j^2, \ \forall j \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 26 \cdot 0.639 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 25 \cdot 1 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 18 \cdot 0 \\
& \quad y_{ij} \geq 0, z_j \geq 0
\end{align*}
\]

Yields Benders cut:

\[
\theta_2 \geq 124 - 36x_3
\]
Example: Iteration 6 (skipped several steps)

Updated master linear problem

\[
\begin{align*}
\text{min} & \quad 120x_1 + 100x_2 + 90x_3 + 1/2(\theta_1 + \theta_2) \\
\text{s.t.} & \quad \theta_1 \geq 1140 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_1 \geq 179 - 52x_1 - 72x_3 \\
& \quad \theta_2 \geq 990 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_2 \geq 124 - 36x_3 \\
& \quad 0 \leq x_i \leq 1, i = 1, 2, 3
\end{align*}
\]

Optimal solution: \(\hat{x} = (0.5, 0.76, 0.33), \hat{\theta} = (129, 112)\)

Optimal value (lower bound on SMIP): 286.5

- Subproblems yield no more violated Benders cuts
- Solution is optimal to the LP relaxation
Example: Branch-and-cut phase

Current master problem

\[
\begin{align*}
\text{min} & \quad 120x_1 + 100x_2 + 90x_3 + 1/2(\theta_1 + \theta_2) \\
\text{s.t.} & \quad \theta_1 \geq 1140 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_1 \geq 179 - 52x_1 - 72x_3 \\
& \quad \theta_1 \geq 179 - 52x_1 - 72x_3 \\
& \quad \theta_2 \geq 990 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_2 \geq 124 - 36x_3 \\
& \quad \theta_2 \geq 124 - 36x_3 \\
& \quad 0 \leq x_i \leq 1, i = 1, 2, 3 \\
x_i \in \{0, 1\}, & \quad i = 1, 2, 3
\end{align*}
\]

Load this (partial) formulation to the MIP solver and start solution process

- Let’s first suppose MIP solver adds no cuts of its own
- What will it do?
Example: Branch-and-cut phase

Initial master linear program relaxation

\[
\begin{align*}
\text{min} & \quad 120x_1 + 100x_2 + 90x_3 + \frac{1}{2}(\theta_1 + \theta_2) \\
\text{s.t.} & \quad \theta_1 \geq 1140 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_1 \geq 179 - 52x_1 - 72x_3 \\
& \quad \hdots \\
& \quad \theta_2 \geq 990 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_2 \geq 124 - 36x_3 \\
& \quad \hdots \\
& \quad 0 \leq x_i \leq 1, \ i = 1, 2, 3
\end{align*}
\]

Optimal solution: \(\hat{x} = (0.5, 0.76, 0.33), \hat{\theta} = (129, 112) \)

Branch!

Let’s branch on \(x_1 \):
Example: First two nodes

\[
\begin{align*}
\text{min} & \quad 120x_1 + 100x_2 + 90x_3 + 1/2(\theta_1 + \theta_2) \\
\text{s.t.} & \quad \theta_1 \geq 1140 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_1 \geq 179 - 52x_1 - 72x_3 \\
& \quad \theta_2 \geq 990 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_2 \geq 124 - 36x_3 \\
& \quad 0 \leq x_i \leq 1, \quad i = 1, 2, 3
\end{align*}
\]

Node 1: Fix \(x_1 = 0 \)
Optimal solution: \(\hat{x} = (0, 1, 0.66) \), \(\hat{z} = 326.3 \)

Node 2: Fix \(x_1 = 1 \)
Optimal solution: \(\hat{x} = (1, 0.46, 0) \), \(\hat{z} = 304.9 \)

Neither can be pruned. Neither yields an upper bound

⇒ Further subdivide each. Start with node 2.
Example: More nodes

\[
\begin{align*}
\text{min} & \quad 120x_1 + 100x_2 + 90x_3 + 1/2(\theta_1 + \theta_2) \\
\text{s.t.} & \quad \theta_1 \geq 1140 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_1 \geq 179 - 52x_1 - 72x_3 \\
& \quad \theta_2 \geq 990 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_2 \geq 124 - 36x_3 \\
& \quad 0 \leq x_i \leq 1, i = 1, 2, 3
\end{align*}
\]

Node 3: Fix \(x_1 = 1, x_2 = 0 \)
Optimal solution: \(\hat{x} = (1, 0, 0.42), \hat{z} = 355.2 \)

Node 4: Fix \(x_1 = 1, x_2 = 1 \)
Optimal solution: \(\hat{x} = (1, 1, 0), \hat{z} = 345.5 \)

Node 4 yields integer feasible solution!

- But \((\hat{x}, \hat{\theta}) \) is not necessarily feasible! (if \(\hat{\theta}_s < Q_s(\hat{x}) \) for some \(s \))
- We MUST check if there are any violated Benders cuts
Scenario subproblems at Node 4

Subproblems with $\hat{x} = (1, 1, 0)$:

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} y_{ij} + \sum_{j=1}^{4} 30z_j \\
\text{s.t.} & \quad \sum_{i=1}^{4} y_{ij} + z_j = d_j^1, \quad \forall j \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 26 \cdot 1 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 25 \cdot 1 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 18 \cdot 0 \\
& \quad y_{ij} \geq 0, z_j \geq 0
\end{align*}
\]

Yields violated Benders cut:

\[\theta_1 \geq 141 - 36x_3\]

Upper bound (because \hat{x} is integer feasible!):

\[\sum_i f_i \hat{x}_i + \sum_s p_s Q_s(\hat{x}) = 220 + 1/2(141 + 124) = 352.5\]
Example: Updated master LP relaxation

\[
\begin{align*}
\text{min} & \quad 120x_1 + 100x_2 + 90x_3 + 1/2(\theta_1 + \theta_2) \\
\text{s.t.} & \quad \theta_1 \geq 1140 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_1 \geq 141 - 36x_3 \\
& \quad \theta_2 \geq 990 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_2 \geq 124 - 36x_3 \\
& \quad 0 \leq x_i \leq 1, \ i = 1, 2, 3
\end{align*}
\]

Node 3: Fix \(x_1 = 1, x_2 = 0 \)
Optimal solution: \(\hat{x} = (1, 0, 0.42), \hat{z} = 355.2 \)

Node 4: Fix \(x_1 = 1, x_2 = 1 \)
New optimal solution: \(\hat{x} = (1, 1, 0), \hat{z} = 352.5 \)

Re-solve master problem at Node 4: Again integer feasible
- No more violated Benders cut \(\Rightarrow \) 352.5 is a valid upper bound
- Both Nodes 3 and 4 can be pruned!
Example: Back to node 1

\[
\begin{align*}
\text{min} & \quad 120x_1 + 100x_2 + 90x_3 + 1/2(\theta_1 + \theta_2) \\
\text{s.t.} & \quad \theta_1 \geq 1140 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \ldots \\
& \quad \theta_1 \geq 141 - 36x_3 \\
& \quad \theta_2 \geq 990 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_2 \geq 124 - 36x_3 \\
& \quad \ldots \\
& \quad 0 \leq x_i \leq 1, i = 1, 2, 3
\end{align*}
\]

Node 1: Fix \(x_1 = 0 \)

Optimal solution: \(\hat{x} = (0, 1, 0.66) \), \(\hat{z} = 326.3 \)

Subdivide again: \(x_3 = 0 \) or \(x_3 = 1 \)
Example: More nodes

\[
\begin{align*}
\text{min} & \quad 120x_1 + 100x_2 + 90x_3 + 1/2(\theta_1 + \theta_2) \\
\text{s.t.} & \quad \theta_1 \geq 1140 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_1 \geq 141 - 36x_3 \\
& \quad \theta_2 \geq 990 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_2 \geq 124 - 36x_3 \\
& \quad 0 \leq x_i \leq 1, \ i = 1, 2, 3
\end{align*}
\]

Node 5: Fix \(x_1 = 0, x_3 = 0\)

Optimal solution: \(\hat{x} = (0, 1, 0), \hat{z} = 507\)

Node 6: Fix \(x_1 = 0, x_3 = 1\)

Optimal solution: \(\hat{x} = (0, 0.75, 1), \hat{z} = 326.3\)

- Node 5 can be pruned (bound is worse than upper bound of 352.5)
- Node 6 must be subdivided again: \(x_2 = 0\) or \(x_3 = 1\)
Example: More nodes

\[
\begin{align*}
\text{min} & \quad 120x_1 + 100x_2 + 90x_3 + 1/2(\theta_1 + \theta_2) \\
\text{s.t.} & \quad \theta_1 \geq 1140 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \ldots \\
& \quad \theta_1 \geq 141 - 36x_3 \\
& \quad \theta_2 \geq 990 - 728x_1 - 675x_2 - 468x_3 \\
& \quad \theta_2 \geq 124 - 36x_3 \\
& \quad \ldots \\
& \quad 0 \leq x_i \leq 1, i = 1, 2, 3
\end{align*}
\]

Node 7: Fix \(x_1 = 0, x_3 = 1, x_2 = 0 \)
Optimal solution: \(\hat{x} = (0, 0, 1) \), \(\hat{z} = 687 \)

Node 8: Fix \(x_1 = 0, x_3 = 1, x_2 = 1 \)
Optimal solution: \(\hat{x} = (0, 1, 1) \), \(\hat{z} = 350.5 \)

- Node 7 can be pruned (bound is worse than upper bound of 352.5)
- Node 8 is integer feasible: Must check for Benders cuts
Scenario subproblems at Node 8

Subproblems with $\hat{x} = (0, 1, 1)$:

\[
\begin{align*}
\min \quad & \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij}y_{ij} + \sum_{j=1}^{4} 30z_{j} \\
\text{s.t.} \quad & \sum_{i=1}^{4} y_{ij} + z_{j} = d_{j}^{1}, \quad \forall j \\
& \sum_{j=1}^{4} y_{ij} \leq 26 \cdot 0 \\
& \sum_{j=1}^{4} y_{ij} \leq 25 \cdot 1 \\
& \sum_{j=1}^{4} y_{ij} \leq 18 \cdot 1 \\
& y_{ij} \geq 0, \quad z_{j} \geq 0
\end{align*}
\]

Yields Benders cut:

\[
\theta_{1} \geq 200 - 130x_{1} - 18x_{3}
\]

Upper bound (because \hat{x} is integer feasible):

\[
\sum_{i} f_{i}\hat{x}_{i} + \sum_{s} p_{s} Q_{s}(\hat{x}) = 190 + 1/2(182 + 142) = 352
\]

After re-solving, node 8 can be pruned \Rightarrow We are done!
That was not very efficient!

What went wrong?
- Poor LP relaxations!

What to do?
- Add Benders cuts at fractional LP solutions
- Use integrality to add stronger cuts (not implied by LP relaxation)

Two options for using integrality to add stronger cuts
- Generate cuts directly in the master problem
- Generate cuts in the subproblems
Master problem cuts

Idea

Derive valid inequalities for the mixed-integer set:

\[\{(x, \theta) : Ax \geq b, \]
\[e\theta_s \geq d_{s,t} + B_{s,t}x, \ s = 1, \ldots, S, \]
\[x \in \mathbb{R}^{n_1}_+ \times \mathbb{Z}^{p_1}_+, \theta \in \mathbb{R}^S \}\]

where the constraints in second row are some Benders cuts

- E.g., split cuts, mixed-integer rounding [Bodur and Luedtke, 2016],
 Gomory mixed-integer cuts, . . . ,
- Ideally, would have all Benders cuts defining \(\{(x, \theta) : \theta_s \geq Q_s(x)\} \) but in general too many to enumerate
Adding cuts in master problem

\[(MP)_t^{LP} : \min_{\theta, x} c^T x + \sum_{s=1}^{S} p_s \theta_s \]

\[\text{s.t. } A x \geq b, x \in \mathbb{R}_{+}^{n_1} \times \mathbb{R}_{+}^{p_1} \]

\[e \theta_s \geq d_{s,t} + B_{s,t} x, \forall s, \]

\[C_t \theta + D_t x \geq g_t \]

\[(SP)^s : Q_s^{LP}(\hat{x}) := \min_{y_s} q_s^T y_s \]

\[\text{s.t. } W_s y_s \geq h_s - T_s \hat{x} \]

\[y \in \mathbb{R}_{+}^{n_2} \times \mathbb{R}_{+}^{p_2} \]
Master problem cuts: Help the MIP solver help you

Master Problem Cuts

Derive valid inequalities for the mixed-integer set:

\[
\{(x, \theta) : Ax \geq b, \\
e \theta_s \geq d_{s,t} + B_{s,t}x, \ s = 1, \ldots, S, \\
x \in \mathbb{R}_+^{n_1} \times \mathbb{Z}_+^{p_1}, \theta \in \mathbb{R}^S\}
\]

where the constraints in second row are some Benders cuts

- MIP solvers will (try to) do this for you if Benders cuts are given to the solver as part of the formulation!
- Facility location example: Gurobi improves root node relaxation from 286.5 to 326.8 (compared to 352 opt)

MIP solvers do not derive cuts based on cuts you add in a callback
Master Problem Cuts

Derive valid inequalities for the mixed-integer set:

\[\{(x, \theta) : Ax \geq b, \]
\[e\theta_s \geq d_{s,t} + B_{s,t}x, \quad s = 1, \ldots, S, \]
\[x \in \mathbb{R}_+^{n_1} \times \mathbb{Z}_+^{p_1}, \quad \theta \in \mathbb{R}^S \}\]

where the constraints in second row are some Benders cuts

Takeaway

Phase 0 (solve LP relaxation with Benders, include cuts in formulation) can be very important for effective branch-and-cut implementation

- Don’t just add cuts in a callback
Cuts in the subproblems: Help yourself!

Key Idea

Use valid inequalities to obtain stronger LP relaxation of each scenario mixed-integer set:

\[X_s := \{(x, y) : Ax \geq b, \; T_s x + W_s y = h_s \} \]

\[x \in \mathbb{R}^{n_1}_+ \times \mathbb{Z}^{p_1}_+, \; y \in \mathbb{R}^{n_2}_+ \times \mathbb{Z}^{p_2}_+ \]

- NB: So far, we have only seen a convergent algorithm for the case \(y \) is continuous
- But subproblem approach for generating cuts is valid and useful for \(y \) mixed-integer

Cuts generated for a single scenario \(\Rightarrow \) Can still apply Benders decomposition
Strength of split cuts: Master vs. subproblem

\[E_s := \{(x, y, \theta) : Ax \geq b, \ T_s x + W_s y = h_s, \ \theta = q_s^\top y \]
\[x \in \mathbb{R}^{n_1}_+ \times \mathbb{R}^{p_1}_+, \ y \in \mathbb{R}^{n_2}_+ \times \mathbb{R}^{p_2}_+ \} \]

\[P_s := \{(x, \theta) : \ \exists y \text{ with } (x, y, \theta) \in Q_s \} \]

- \(E_s \) is the subproblem formulation, \(P_s \) is projection based on all Benders cuts from one scenario

Theorem [Bodur et al., 2016]

Relaxation obtained using all split cuts on \(E_s \) is at least as good as that using all split cuts on \(P_s \), and difference can be large.

Adding cuts in subproblems can be much more effective:

- Power of extended variable space
- Can also use second-stage integrality

Also implies that split cuts in master problem can be more effective when using multi-cut \((\theta_s \geq \ldots) \) vs. single-cut \((\theta \geq \sum_s \ldots) \)
Cuts in subproblem

\[(\text{MP})_{t}^{LP} : \min_{\theta, x} c^T x + \sum_{s=1}^{S} p_s \theta_s\]

s.t. \(Ax \geq b, x \in \mathbb{R}_{+}^{n_1} \times \mathbb{R}_{+}^{p_1}\)

\(e\theta_s \geq d_{s,t} + B_{s,t}x, \forall s,\)

\(\theta \in \mathbb{R}^S\)

\[(\text{SP})^s : Q_s(\hat{x}) := \min_{y_s} q_s^T y_s\]

s.t. \(W_s y_s \geq h_s - T_s \hat{x}\)

\(y \in \mathbb{R}_{+}^{n_2} \times \mathbb{R}_{+}^{p_2}\)
Cuts in subproblem

\[(MP)^{LP}_t : \min_{\theta, x} c^T x + \sum_{s=1}^{S} p_s \theta_s \]

s.t. \[Ax \geq b, x \in \mathbb{R}^{n_1}_+ \times \mathbb{R}^{p_1}_+\]
\[e \theta_s \geq d_{s,t} + B_{s,t} x, \ \forall s,\]
\[\theta \in \mathbb{R}^S\]

\[(SP)^s : Q_s(\hat{x}) := \min_{y_s} q_s^T y_s \]

s.t. \[W_s y_s \geq h_s - T_s \hat{x}\]
\[C_s y_s \geq g_s - D_s \hat{x}\]
\[y \in \mathbb{R}^{n_2}_+ \times \mathbb{R}^{p_2}_+\]

Add cuts to \((SP)^s\), even if it’s originally an LP \((p_2 = 0)\)
Cuts in the subproblems: Help yourself!

Question

How to generate valid inequalities for each scenario mixed-integer set?

\[X_s := \{(x, y) : Ax \geq b, \ T_s x + W_s y = h_s \]
\[x \in \mathbb{R}^{n_1}_1 \times \mathbb{Z}^{p_1}_1, y \in \mathbb{R}^{n_2}_1 \times \mathbb{Z}^{p_2}_1 \} \]

Generating such cuts might require expertise in general integer programming cuts

- Split cuts, Gomory mixed-integer cuts, Chvátal-Gomory cuts, ...

But it also might not...

- Use problem-specific cuts, or a better formulation
- E.g., facility location problem
Facility location: Subproblem cuts

Feasible region for a scenario s:

$$\{(x, y, z) : \sum_{i \in I} y_{ij} + z_j \geq d^s_j, \quad j \in J \}
\sum_{j \in J} y_{ij} \leq C_i x_i, \quad i \in I
y_{ij} \geq 0, z_j \geq 0, \quad i \in I, j \in J
x_i \in \{0, 1\}, \quad i \in I \}$$

Recall: Valid inequalities

$$y_{ij} \leq \min\{d^s_j, C_i\} x_i, \quad i \in I, j \in J$$

Two options for using them (because there is a “small” number of them)

- Directly add them to the scenario subproblem formulations ✓
- Add them as cuts when solving scenario subproblems
Cut Based Methods (Branch-and-Cut/Benders)

Continuous Recourse

Branch-and-cut again

Initialization phase: Solve new LP relaxation via Benders

Iteration 1: Master linear problem (no θ variable yet)

\[
\begin{align*}
\min \ & 120x_1 + 100x_2 + 90x_3 \\
\text{s.t.} \ & 0 \leq x_i \leq 1, \ i = 1, 2, 3
\end{align*}
\]

Optimal solution: $\hat{x} = (0, 0, 0)$
Optimal value (lower bound on SMIP): 0
Subproblems with $\hat{x} = (0, 0, 0)$:

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} y_{ij} + \sum_{j=1}^{4} 30z_j \\
\text{s.t.} & \quad \sum_{i=1}^{4} y_{ij} + z_j = d_j^1, \quad \forall j \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 26 \cdot 0 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 25 \cdot 0 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 18 \cdot 0 \\
& \quad y_{11} \leq 12 \cdot 0 \\
& \quad \ldots \\
& \quad y_{34} \leq 11 \cdot 0 \\
& \quad y_{ij} \geq 0, z_j \geq 0
\end{align*}
\]

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} y_{ij} + \sum_{j=1}^{4} 30z_j \\
\text{s.t.} & \quad \sum_{i=1}^{4} y_{ij} + z_j = d_j^2, \quad \forall j \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 26 \cdot 0 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 25 \cdot 0 \\
& \quad \sum_{j=1}^{4} y_{ij} \leq 18 \cdot 0 \\
& \quad y_{11} \leq 8 \cdot 0 \\
& \quad \ldots \\
& \quad y_{34} \leq 6 \cdot 0 \\
& \quad y_{ij} \geq 0, z_j \geq 0
\end{align*}
\]

Each yields a Benders cut which is added to master problem...
Example: Iteration 7 (skipped many steps)

Updated master linear program

\[
\begin{align*}
\text{min} & \quad 120x_1 + 100x_2 + 90x_3 + \frac{1}{2}(\theta_1 + \theta_2) \\
\text{s.t.} & \quad \theta_1 \geq 1140 - 923x_1 - 922x_2 - 864x_3 \\
& \quad \ldots \\
& \quad \theta_2 \geq 990 - 794x_1 - 812x_2 - 758x_3 \\
& \quad \ldots \\
& \quad 0 \leq x_i \leq 1, \ i = 1, 2, 3
\end{align*}
\]

Optimal solution: \(\hat{x} = (0.56, 0.93, 0) \), \(\hat{\theta} = (190.3, 152.4) \)

Recall: Original LP relaxation bound = 286.5

- Bound using this formulation: 332.4 (recall opt = 352)
- After Gurobi master cuts on this: 350.5
Recap: SMIP with continuous recourse

Two general approaches:

1. Benders with MIP master problem
2. Branch-and-cut adding Benders cuts (and others) in tree

Which is better?

1. **Sequence of MIPs**
 - Easy to implement
 - Tends to solve fewer scenario subproblems
 - Master MIP problems may become bottleneck
 - Takes full advantage of MIP solver

2. **Branch-and-cut**
 - More difficult to implement
 - Single tree eliminates redundant work
 - Allows exploiting subproblem cuts, e.g., based on problem structure

My advice: Try simpler option first!
Mixed-integer recourse

What goes wrong with Benders approach with mixed-integer recourse?

Stochastic MIP

\[
\begin{align*}
\min & \quad c^\top x + \sum_{s=1}^{S} p_s \theta_s \\
\text{s.t.} & \quad Ax \geq b \\
& \quad \theta_s \geq Q_s(x), \quad s = 1, \ldots, S \\
& \quad x \in \mathbb{R}_{+}^{n_1} \times \mathbb{Z}_{+}^{p_1}
\end{align*}
\]

- \(Q_s(x) \): Value function of a mixed-integer program
- Benders cuts (including strengthened with subproblem cuts) still valid
- But master problem constraints \(\theta_s \geq Q_s(x) \) cannot be enforced with Benders cuts alone!

Where for \(s = 1, \ldots, S \)

\[
Q_s(x) = \min q_s^\top y \\
\text{s.t.} \quad W_s y = h_s - T_s x \\
\quad y \in \mathbb{R}_{+}^{n_2} \times \mathbb{Z}_{+}^{p_2}
\]
Pure binary first-stage

Suppose all first-stage variables are binary

\[
\begin{align*}
\min & \quad c^\top x + \sum_{s=1}^{S} p_s \theta_s \\
\text{s.t.} & \quad Ax \geq b \\
& \quad \theta_s \geq Q_s(x), \quad s = 1, \ldots, S \\
& \quad x \in \{0, 1\}^{n_1}
\end{align*}
\]

Integer \(L\)-shaped cuts

Assume \(Q_s(x) \geq L\) for all \(s\) and all feasible \(x\). Let \(\hat{x} \in \{0, 1\}^{n_1}\). Then the following inequality is valid:

\[
\theta_s \geq Q_s(\hat{x}) - (Q_s(\hat{x}) - L) \left(\sum_{j: \hat{x}_j = 1} (1 - x_j) + \sum_{j: \hat{x}_j = 0} x_j \right)
\]
Pure binary first-stage

Suppose all first-stage variables are binary

Integer L-shaped cuts

Assume $Q_s(x) \geq L$ for all s and all feasible x. Let $\hat{x} \in \{0, 1\}^{n_1}$. Then the following inequality is valid:

$$\theta_s \geq Q_s(\hat{x}) - (Q_s(\hat{x}) - L) \left(\sum_{j: \hat{x}_j = 1} (1 - x_j) + \sum_{j: \hat{x}_j = 0} x_j \right)$$

Proof:
- If $x = \hat{x}$: Inequality becomes $\theta_s \geq Q_s(\hat{x})$ \checkmark
- If $x \neq \hat{x}$: Summation term ≥ 1

$$Q_s(\hat{x}) - (Q_s(\hat{x}) - L) \left(\sum_{j: \hat{x}_j = 1} (1 - x_j) + \sum_{j: \hat{x}_j = 0} x_j \right)$$

$$\leq Q_s(\hat{x}) - (Q_s(\hat{x}) - L) = L \leq \theta_s$$
Pure binary first-stage

Suppose all first-stage variables are binary

Integer L-shaped cuts

Assume $Q_s(x) \geq L$ for all s and all feasible x. Let $\hat{x} \in \{0, 1\}^n$. Then the following inequality is valid:

$$\theta_s \geq Q_s(\hat{x}) - (Q_s(\hat{x}) - L) \left(\sum_{j: \hat{x}_j = 1} (1 - x_j) + \sum_{j: \hat{x}_j = 0} x_j \right)$$

- Proof also demonstrates that integer L-shaped cuts are sufficient to define $Q_s(x)$ at integer points
- NB: Calculating an integer L-shaped cut requires solving MIP to evaluate $Q_s(\hat{x})$
Pure binary first-stage

Integer L-shaped cuts can be used exactly as Benders cuts were used in case of continuous recourse

- Solve sequence of MIP master problems
- Use them as cuts within branch-and-cut algorithm

But integer L-shaped should not be used alone!

- VERY WEAK cuts. Cut defined by \hat{x} probably only useful for $x = \hat{x}$
- \Rightarrow May require one cut for every feasible solution

Instead, combine with all the techniques we discussed for continuous recourse

- Benders cuts from LP relaxation: see, e.g., [Angulo et al., 2016]
- Master problem cuts based on integrality of first-stage variables and subset of Benders cuts
- Subproblem cuts based on integrality of first and second-stage variables
Many other cases

Key ingredient in each case

Use cuts/branching to enforce constraint $\theta_s \geq Q_s(x)$ for x feasible to first-stage problem

Pure binary first stage:
- Split cuts, transfer from one scenario to another: [Sen and Higle, 2005]
- Gomory cuts: [Gade et al., 2014]
- Fenchel cuts: [Ntaimo, 2013]
- Coordination branching: [Alonso-Ayuso et al., 2003]
- Lagrangian cuts: [Zou et al., 2016] (Ahmed’s semiplenary on Friday)

Pure integer first and second-stage:
- Gomory cuts [Zhang and Küçükyavuz, 2014]
Other cases (cont’d)

Mixed binary in first and second-stage:
- Lift-and-project (split) cuts: [Carøe, 1998, Tanner and Ntaimo, 2008]
- Reformulation linearization technique: [Sherali and Zhu, 2007]
- Disjunctive cuts from branch-and-cut tree: [Sen and Sherali, 2006]

Pure integer second-stage:
- Reformulation, integer subproblems, specialized branching: [Ahmed et al., 2004]

Simple integer second-stage recourse:
- Cuts and reformulation: [Louveaux and van der Vlerk, 1993]

General mixed-integer first and second-stage: ???
Variable Splitting

Idea

- Create copies of the first-stage decision variables for each scenario

Recall: Extensive form

\[
z^{SMIP} = \min c^\top x + \sum_{s=1}^{S} p_s q_s^\top y_s
\]

s.t. \(Ax \geq b\)

\[
T_s x + W_s y_s = h_s \quad s = 1, \ldots, S
\]

\[
x \in \mathbb{R}^{n_1}_+ \times \mathbb{Z}^{p_1}_+
\]

\[
y_s \in \mathbb{R}^{n_2}_+ \times \mathbb{Z}^{p_2}_+, \quad s = 1, \ldots, S
\]
Variable Splitting

Idea

- Create copies of the first-stage decision variables for each scenario

Copy first-stage variables

\[z^{SMIP} = \min \sum_{s=1}^{S} p_s (c^T x_s + q_s^T y_s) \]

\[Ax_s \geq b \quad s = 1, \ldots, S \]

\[T_s x_s + W_s y_s = h_s \quad s = 1, \ldots, S \]

\[x_s = \sum_{s'=1}^{S} p_{s'} x_{s'} \quad s = 1, \ldots, S \]

\[x_s \in \mathbb{R}_{+}^{n_1} \times \mathbb{Z}_{+}^{p_1}, \quad s = 1, \ldots, S \]

\[y_s \in \mathbb{R}_{+}^{n_2} \times \mathbb{Z}_{+}^{p_2}, \quad s = 1, \ldots, S \]
Relax nonanticipativity

- The constraints \(x_s = \sum_{s' = 1}^S p_{s'} x_{s'} \) are called *nonanticipativity constraints*.
- Relax these constraints using *Lagrangian Relaxation* with dual vectors \(\lambda = (\lambda_1, \ldots, \lambda_S) \):

\[
\mathcal{L}(\lambda) := \min \sum_{s=1}^S p_s (c^T x_s + q_s^T y_s) + \sum_{s=1}^S p_s \lambda_s^T (x_s - \sum_{s'=1}^S p_{s'} x_{s'})
\]

\[
Ax_s \geq b \quad s = 1, \ldots, S
\]

\[
T_s y_s + W_s y_s = h_s \quad s = 1, \ldots, S
\]

\[
x_s \in \mathbb{R}^{n_1} \times \mathbb{Z}^{p_1}_+, \quad s = 1, \ldots, S
\]

\[
y_s \in \mathbb{R}^{n_2} \times \mathbb{Z}^{p_2}_+, \quad s = 1, \ldots, S
\]

- Rewrite the objective (\(\bar{\lambda} = \sum_{s=1}^S p_s \lambda_s \)):

\[
\sum_{s=1}^S p_s \left((c + (\lambda_s - \bar{\lambda}))^T x_s + q_s^T y_s \right)
\]
Relax nonanticipativity

- Rewritten objective ($\bar{\lambda} = \sum_{s=1}^{S} p_s \lambda_s$):

 $$\sum_{s=1}^{S} p_s \left((c + (\lambda_s - \bar{\lambda}))^T x_s + q_s^T y_s \right)$$

- Normalize λ_s so that $\bar{\lambda} = 0$

- Lagrangian relaxation problem decomposes: $\mathcal{L}(\lambda) = \sum_s p_s D_s(\lambda_s)$
 where

 $$D_s(\lambda_s) := \min \ (c + \lambda_s)^T x + q_s^T y_s$$

 s.t. $Ax \geq b$, $T_s x + W_s y = h_s$

 $x \in \mathbb{R}^{n_1}_+ \times \mathbb{Z}^{p_1}_+$, $y \in \mathbb{R}^{n_2}_+ \times \mathbb{Z}^{p_2}_+$

- Each subproblem is a deterministic mixed-integer program
For any $\lambda = (\lambda_1, \ldots, \lambda_S)$ with $\sum_s p_s \lambda_s = 0$,

\[\mathcal{L}(\lambda) \leq z^{SMIP} \]

Lagrangian dual

Find best lower bound:

\[w^{LD} := \max \left\{ \mathcal{L}(\lambda) : \sum_{s=1}^{S} p_s \lambda_s = 0 \right\} \]
Strength of Lagrangian dual

Theorem

The Lagrangian dual bound satisfies

\[
 w^{LD} = \min \left\{ c^\top x + \sum_{s=1}^S p_s y_s : (x, y_s) \in \text{conv}(X_s), s = 1, \ldots, S \right\}
\]

where for \(s = 1, \ldots, S \)

\[
 X_s := \{(x, y) : Ax \geq b, \ T_s x + W_s y = h_s

 x \in \mathbb{R}^{n_1}_+ \times \mathbb{Z}^{p_1}_+, y \in \mathbb{R}^{n_2}_+ \times \mathbb{Z}^{p_2}_+ \}
\]

- In general \(w^{LD} < z^{SMIP} \)
- But \(w^{LD} \geq z^{SLP} \) (the usual LP relaxation)
- \(w^{LD} \) at least as good as any bound obtained using cuts in single scenario subproblems
- In many test instances, \(w^{LD} \) is very close to \(z^{SMIP} \)
Solving the Lagrangian dual

Lagrangian dual

Find best lower bound:

\[w^{LD} := \max \left\{ \mathcal{L}(\lambda) : \sum_{s=1}^{S} p_s \lambda_s = 0 \right\} \]

- \(\lambda \): High-dimensional \((S \times n)\)
- \(\mathcal{L}(\lambda) \): Non-smooth, concave function of \(\lambda \)
- Subgradients of \(\mathcal{L}(\lambda) \): Solve \(S \) deterministic MIP problems

Convex program, but challenging!
Subgradient algorithm

Iteration k

- Solve scenario MIP problems to evaluate $D_s(\lambda_s^k)$ and obtain solution x_s^k, $s = 1, \ldots, S$
- Calculate $\bar{x}^k = \sum_s p_s x_s^k$
- Update λ_s, $s = 1, \ldots, S$ (ρ_k is a predetermined step size)

$$\lambda_{s}^{k+1} \leftarrow \lambda_{s}^{k} + \rho_k \left(x_s^k - \bar{x}^k \right)$$

subgradient at λ^k

Properties

- Converges for proper choice of step sizes
- But slow in practice and very sensitive to step-size choices
Cutting plane algorithm

Idea (similar to Benders!)

- Formulate a master problem

\[
\max_{\lambda, \theta} \left\{ \sum_s p_s \theta_s : \theta_s \leq D_s(\lambda_s), \sum_s p_s \lambda_s = 0 \right\}
\]

- Use subgradient cuts to approximate the constraints \(\theta_s \leq D_s(\lambda_s) \) in a relaxed master problem (RMP)

\[
\max \sum_s p_s \theta_s \\
\text{s.t. } \theta_s \leq D_s(\lambda_s^i) + (x_s^i - \bar{x}^i)^\top (\lambda_s - \lambda_s^i), \quad i = 1, \ldots, k, \ s = 1, \ldots, S \\
\sum_s p_s \lambda_s = 0
\]

- Solve RMP, solve MIP subproblems to find cuts, repeat
Improvements to cutting plane algorithm

Bundle-Regularization techniques can be applied to improve performance

- General idea: Add objective term or constraint to encourage/require RMP solutions to not move “too far” in consecutive iterations
- [Ruszczyński, 1986]: Proximal bundle applied in SLP
- [Lemaréchal et al., 1995]: Bundle-level method
- [Linderoth and Wright, 2003]: Trust region applied in SLP
- [Zverovich et al., 2012]: Numerical comparison of SLP
- [Lubin et al., 2013]: Numerical comparison for Lagrangian dual, parallel implementation
Progressive hedging

Progressive hedging: [Rockafellar and Wets, 1991]
- Elegant algorithm for solving \textit{primal and dual} for convex stochastic programs
- Equivalent to alternating direction method of multipliers

Iteration k
- Solve augmented (convex!) scenario problems and obtain solution x_s^k, $s = 1, \ldots, S$:

$$D_s^\rho(\lambda_s; \bar{x}^{k-1}) := \min \ (c + \lambda_s)^\top x + q_s^\top y + (\rho/2)\|x - \bar{x}^{k-1}\|_2^2$$
 \[\text{s.t. } Ax \geq b, \ T_s x + W_s y = h_s \]
 \[x \in \mathbb{R}^{n_1}_+, \ y \in \mathbb{R}^{n_2}_+ \]
- Calculate $\bar{x}^k = \sum_s p_s x_s^k$
- Update λ_s, $s = 1, \ldots, S$ (ρ is a fixed step size)

$$\lambda_s^{k+1} \leftarrow \lambda_s^k + \rho(x_s^k - \bar{x}^k)$$
Progressive hedging for SMIP?

What if we just solve quadratic MIP subproblems?

\[D^\rho_s(\lambda_s; \bar{x}^{k-1}) := \min (c + \lambda_s)^T x + q_s^T y + (\rho/2)\|x - \bar{x}^{k-1}\|_2^2 \]

s.t. \((x, y) \in X_s\)

where (recall):

\[X_s = \{(x, y) : Ax \geq b, T_s x + W_s y = h_s \} \]

\[x \in \mathbb{R}^{n_1}_+ \times \mathbb{Z}^{p_1}_+, y \in \mathbb{R}^{n_2}_+ \times \mathbb{Z}^{p_2}_+ \}

No convergence theory, but:

- [Watson et al., 2010] Basis of effective heuristic for primal feasible solutions
- [Gade et al., 2016] Heuristic search for good dual solutions \(\lambda_s\) (sensitive to choice of \(\rho\))
Progressive hedging for SMIP?

Suppose we could solve this subproblem:

$$\min \left\{ (c + \lambda_s)^\top x + q^\top_s y + (\rho/2) \|x - \bar{x}^{k-1}\|_2^2 : (x, y) \in \text{conv}(X_s) \right\}$$

Problem is convex \Rightarrow Progressive hedging works!

- Dual solution λ_s converges to optimum of Lagrangian dual
- Challenge: $\text{conv}(X_s)$ not known explicitly

[Boland et al., 2016]: Use inner approximation of $\text{conv}(X_s)$

- Update inner approximation by solving standard MILP subproblems

$$D_s(\lambda_s) = \min \left\{ (c + \lambda_s)^\top x + q^\top_s y : (x, y) \in X_s \right\}$$

- Each iteration requires solving S “one scenario” QP’s and MILP’s
- See Dandurand talk for details: Monday, 27-June (5pm)
Closing the gap

Suppose we have (approximately) solved Lagrangian dual

- $\hat{\lambda} = (\hat{\lambda}^1, \ldots, \hat{\lambda}^S)$ and $\mathcal{L}(\hat{\lambda}) \leq z^{SMIP}$
- Primal subproblem solutions: $\hat{x}_1, \ldots, \hat{x}_S$
- Problem: \hat{x}_s possibly not all equal!

Options:

- Find a heuristic solution $\Rightarrow z^{UB}$, compare to $\mathcal{L}(\hat{\lambda})$
- **Dual decomposition** [Carøe and Schultz, 1999]: Use Lagrangian dual in branch-and-bound algorithm
 - Implemented in DDSIP [Märkert and Gollmer, 2016]

Simple heuristic (works assuming relatively complete recourse):

- Choose any first-stage scenario solution \hat{x}_s
- Fix $x = \hat{x}_s$, and solve all second-stage subproblems
Branch-and-bound

Given approximate Lagrangian dual solution

- \(\hat{\lambda} = (\hat{\lambda}_1, \ldots, \hat{\lambda}_S) \) and \(\mathcal{L}(\hat{\lambda}) \leq z^{SMIP} \)
- Primal subproblem solutions: \(\hat{x}_1, \ldots, \hat{x}_S, \bar{x} = \sum_s \hat{x}_s \)

How to branch?

- Solution is infeasible \(\iff \exists i, s \text{ with } \hat{x}_{si} \neq \bar{x}_i \)
- If \(x_i \) is an integer decision variable:
 - Branch 1: \(x_i \leq \lfloor \bar{x}_i \rfloor \), Branch 2: \(x_i \geq \lceil \bar{x}_i \rceil \)
- Else:
 - Branch 1: \(x_i \leq \bar{x}_i \), Branch 2: \(x_i \geq \bar{x}_i \)
- Enforce branching constraints in all scenario subproblems
 - At least one subproblem solution must change!
 - Algorithm is finite if accept solutions as “feasible” when \(|\hat{x}_{si} - \bar{x}_i| \leq \delta \ \forall i, s \) for some tolerance \(\delta > 0 \)
Binary first-stage variables: Fewer nonanticipativity constraints?

Suppose x_i is a binary variable: Clever modeling trick?

- Standard nonanticipitivitiy constraints: S constraints
 \[x_{si} = \sum_{s'} x_{s'i} \quad \forall s \]

- As $x_i \in \{0, 1\}$, can be enforced more compactly, e.g.,
 \[\sum_{s=2}^{S} x_{si} = (S - 1)x_{1i} \]

 - $x_{1i} = 1 \iff \sum_{s=2}^{S} x_{si} = S - 1 \iff x_{si} = 1, s = 2, \ldots, S$

n binary variables \Rightarrow Only n Lagrangian dual variables instead of nS!

Almost surely a **BAD IDEA**!

- Strength of Lagrangian dual bound can be (significantly) weaker \Rightarrow More branching!
- Yet calculating Lagrangian dual still requires solving S MIP subproblems
Scenario Bundling

Simple Idea

- Partition scenario set as: \(\{1, \ldots, S\} = \bigcup_{k=1}^{K} B_k, \ B_k \cap B_{k'} = \emptyset \)
- When doing decomposition, treat scenarios within each “bundle” as a single scenario

- Idea can be applied in either LP or Lagrangian based approaches
- See, e.g., [Wets, 1988], [Gade et al., 2016], [Escudero et al., 2013], [Crainic et al., 2014]
Scenario bundling in LP based methods

Scenario decomposition

\[
\begin{align*}
\min & \quad c^T x + \sum_{s = 1}^{S} p_s Q_s(x) \\
\text{s.t.} & \quad Ax \geq b \\
& \quad x \in \mathbb{R}^{n_1} \times \mathbb{Z}^{p_1}_+
\end{align*}
\]

where for \(s = 1, \ldots, S \)

\[
Q_s(x) = \min q_s^T y
\]

\[
\text{s.t.} \quad W_s y = h_s - T_s x
\]

\[
\quad y \in \mathbb{R}^{n_2} \times \mathbb{Z}^{p_2}_+
\]

Bundle decomposition

\[
\begin{align*}
\min & \quad c^T x + \sum_{k = 1}^{K} \tilde{Q}_k(x) \\
\text{s.t.} & \quad Ax \geq b \\
& \quad x \in \mathbb{R}^{n_1} \times \mathbb{Z}^{p_1}_+
\end{align*}
\]

where for \(k = 1, \ldots, K \)

\[
\tilde{Q}_k(x) = \min \sum_{s \in B_k} p_s q_s^T y_s
\]

\[
\text{s.t.} \quad W_s y_s = h_s - T_s x, \quad s \in B_k
\]

\[
\quad y_s \in \mathbb{R}^{n_2} \times \mathbb{Z}^{p_2}_+, \quad s \in B_k
\]

- Just apply all methods to “Bundle” formulation, with bundles treated like large scenarios
Scenario bundling in LP based methods

Cost of bundle formulation
- Bundle subproblems are larger

Potential benefits
- Faster convergence to solve relaxations (fewer θ_k vars \Rightarrow fewer cuts)
- Fewer subproblems to solve per iteration
- Subproblem cuts derived from bundles can be stronger

Questions (answer empirically?)
- How much bundling gives best trade-off?
- Which scenarios bundle?
Scenario bundling in Lagrangian approach

Create one copy of first-stage variables per bundle

\[z^{SMIP} = \min \sum_{k=1}^{K} \sum_{s \in B_k} p_s (c^T x_k + q_s^T y_s) \]

\[Ax_k \geq b \quad k = 1, \ldots, K \]

\[T_s x_k + W_s y_s = h_s \quad s \in B_k, k = 1, \ldots, K \]

\[x_k = \sum_{k'=1}^{K} x_{k'} \quad k = 1, \ldots, K \]

\[x_k \in \mathbb{R}_+^{n_1} \times \mathbb{Z}_+^{p_1}, \quad k = 1, \ldots, K \]

\[y_s \in \mathbb{R}_+^{n_2} \times \mathbb{Z}_+^{p_2}, \quad s = 1, \ldots, S \]
Scenario bundling in Lagrangian approach

Relax the bundle nonanticipativity constraints with dual variables λ_k, $k = 1, \ldots, K$

$$x_k = \sum_{k' = 1}^{K} x_{k'}, \quad k = 1, \ldots, K$$

Bundle subproblems become:

$$D_k(\lambda_k) := \min (c + \lambda_k)^T x + \sum_{s \in B_k} p_s q_s^T y_s$$

s.t. $Ax \geq b$, $T_s x + W_s y = h_s$, $s \in B_k$

$y_s \in \mathbb{R}_{+}^{n_2} \times \mathbb{Z}_{+}^{p_2}$, $s \in B_k$

$x \in \mathbb{R}_{+}^{n_1} \times \mathbb{Z}_{+}^{p_1}$

Similar trade-offs:

- Fewer dual variables \Rightarrow Lagrangian dual may be solved in fewer iterations
- Fewer MIP subproblems, but each is larger
- **Better Lagrangian bound** (possibly much better!)
Parting thoughts

The future is bright for stochastic mixed-integer programming!

- Many important applications
- Significant and steady progress in methods

But we have work to do

- SMIP **not** well solved, even in simplest case of continuous recourse
- Many current test instances: 10 – 20 first-stage variables, ≤ 50 scenarios

[Cameron Luedtke]
Let’s hit the beach!

Questions?
- jim.luedtke@wisc.edu

Thanks!
- Merve Bodur: Pictures
- Shabbir Ahmed: Course notes

And apologies...
- \(\mathbb{P}(\text{Reference list is incomplete}) = 1 \)

Strengthened Benders cuts for stochastic integer programs with continuous recourse.

IJOC.

Bodur, M. and Luedtke, J. (2016).
Mixed-integer rounding enhanced Benders decomposition for multiclass service system staffing and scheduling with arrival rate uncertainty.

Management Science.

Boland, N., Christiansen, J., Dandurand, B., Eberhard, A., Linderoth, J., Luedtke, J., and Oliveira, F. (2016).
Progressive hedging with a Frank-Wolfe method for computing stochastic mixed-integer programming Lagrangian dual bounds.

[optimization-online.org.](optimization-online.org)

Carøe, C. C. (1998).
"Decomposition in Stochastic Integer Programming."
PhD thesis, Department of Operations Research, University of Copenhagen, Denmark.

Odds and Ends

Scenario Bundling

Scenarios and policy aggregation in optimization under uncertainty.

A regularized decomposition method for minimizing a sum of polyhedral functions.

The C^3 theorem and a D^2 algorithm for large scale stochastic mixed-integer programming: set convexification.

Decomposition with branch-and-cut approaches for two-stage stochastic mixed-integer programming.
Mathematical Programming, 106:203–223.

